Application Notes for Configuring Avaya IP Office 9.1 and
Avaya Session Border Controller for Enterprise 7.0 to
support XO Communications SIP Trunking – Issue 1.0

Abstract

These Application Notes describe the procedures for configuring Session Initiation Protocol (SIP) Trunking on an enterprise solution consisting of Avaya IP Office 9.1 and Avaya Session Border Controller for Enterprise 7.0, to interoperate with XO Communications SIP Trunking.

The SIP Trunking service offered by XO Communications provides customers with PSTN access via a SIP trunk between the enterprise and the service provider’s network, as an alternative to legacy analog or digital trunks. This approach generally results in lower cost for the enterprise.

Readers should pay attention to Section 2, in particular the scope of testing as outlined in Section 2.1 as well as the observations noted in Section 2.2, to ensure that their own use cases are adequately covered by this scope and results.

Information in these Application Notes has been obtained through DevConnect compliance testing and additional technical discussions. Testing was conducted via the DevConnect Program at the Avaya Solution and Interoperability Test Lab.
1. Introduction
These Application Notes describe the steps to configure Session Initiation Protocol (SIP) trunking between XO Communications SIP Trunking and an Avaya SIP-enabled enterprise solution. The Avaya solution consists of Avaya IP Office Release 9.1, Avaya Session Border Controller for Enterprise (Avaya SBCE) Release 7.0 and various Avaya endpoints.

The SIP trunking service provided by XO Communications and referenced within these Application Notes is designed for business customers. Customers using this service with this Avaya enterprise solution are able to place and receive PSTN calls via a broadband WAN connection using the SIP protocol. This converged network solution is an alternative to traditional PSTN trunks such as analog and/or ISDN-PRI.

2. General Test Approach and Test Results
A simulated enterprise site containing all the Avaya equipment for the SIP-enabled solution was installed at the Avaya Solution and Interoperability Lab. The enterprise site was configured to connect to XO Communications SIP Trunking Services via a broadband connection.

The configuration shown in Figure 1 was used to exercise the features and functionality tests listed in Section 2.1.

DevConnect Compliance Testing is conducted jointly by Avaya and DevConnect members. The jointly-defined test plan focuses on exercising APIs and/or standards-based interfaces pertinent to the interoperability of the tested products and their functionalities. DevConnect Compliance Testing is not intended to substitute full product performance or feature testing performed by DevConnect members, nor is it to be construed as an endorsement by Avaya of the suitability or completeness of a DevConnect member’s solution.
2.1. Interoperability Compliance Testing

To verify SIP trunking interoperability, the following features and functionality were covered during the interoperability compliance test:

- Response to SIP OPTIONS queries.
- Incoming PSTN calls to various phone types. Phone types included SIP, H.323, digital and analog telephones at the enterprise. All inbound PSTN calls were routed to the enterprise across the SIP trunk from the service provider.
- Outgoing PSTN calls from various phone types. Phone types included SIP, H.323, digital, and analog telephones at the enterprise. All outbound PSTN calls were routed from the enterprise across the SIP trunk to the service provider.
- Inbound and outbound PSTN calls to/from Avaya Communicator for Windows softphones.
- Inbound and outbound PSTN calls to/from SIP remote workers using Avaya Communicator for Windows softphones.
- Various call types including: local, long distance national, long distance international, inbound and outbound toll free, operator (0), operator assisted calls (0+10), local directory assistant (411) and emergency calls (simulated 911 service in the XO Communications test lab).
- Codecs G.729A and G.711MU.
- Fax T.38 and G.711 pass-through.
- Caller ID presentation and Caller ID restriction.
- DTMF transmission using RFC 2833.
- Voicemail navigation for inbound and outbound calls.
- User features such as hold and resume, transfer, and conference.
- Off-net call transfer, call forwarding and twinning.
2.2. Test Results
Interoperability testing of the XO Communications SIP Trunking service was completed with successful results for all test cases with the observation described below:

- While XO Communications supports REFER for the transfer of inbound or outbound PSTN calls that are transferred back to another PSTN number on the same SIP trunk, Avaya IP Office supports only consultative (attended) call transfers when using REFER over SIP public trunks. If both attended and blind (unattended) call transfers to the PSTN are required, it is recommended to disable REFER in the SIP Line tab of the IP Office. The caveat is that with REFER disabled, the IP Office remains in the path of the call after the transfer is completed, and two trunks remain busy for the complete duration of the call.

3. Reference Configuration
Figure 1 illustrates the sample Avaya SIP-enabled enterprise solution, connected to XO Communications SIP Trunking through a public Internet WAN connection.

![Figure 1: Test Configuration](image_url)
Note that for security purposes, all public IP addresses of the network elements and public PSTN numbers shown throughout these Application Notes have been edited so the actual values are not revealed.

The enterprise site contains the Avaya IP Office 500v2 with analog and digital extension expansion modules, as well as a VCM64 (Voice Compression Module) for supporting VoIP codecs. The LAN1 port of Avaya IP Office is connected to the enterprise LAN. Endpoints include Avaya 1600 and 9600 Series IP Deskphones (with H.323 firmware), Avaya 1140E IP Deskphones (with SIP firmware), Avaya 1408 and 9508D Digital Deskphones, analog telephones and PCs running Avaya Communicator for Windows.

The site also has a Windows PC running Avaya IP Office Manager to configure and administer the Avaya IP Office system, and Avaya Voicemail Pro providing voice messaging service to the Avaya IP Office users. Mobile Twinning is configured for some of the Avaya IP Office users so that calls to these users’ extensions will also ring and can be answered at the configured mobile telephones.

The Avaya SBCE is located at the edge of the enterprise. It has two physical interfaces; interface B1 was used to connect to the public network, while interface A1 was used to connect to the private enterprise infrastructure. All signaling and media traffic entering or leaving the enterprise flows through the Avaya SBCE, in this way protecting the enterprise against any SIP-based attacks. The Avaya SBCE also performs network address translation at both the IP and SIP layers.

The transport protocol used between the Avaya SBCE and XO Communications across the public IP network was UDP. The transport protocol between the Avaya SBCE and the Avaya IP Office across the enterprise IP network was also UDP.

Additionally, the reference configuration included the support for IP Office soft-clients in a remote worker environment. A remote worker is a SIP endpoint that resides in the untrusted network, registered to the IP Office at the enterprise via the Avaya SBCE. Remote workers feature the same functionality as any other endpoint at the enterprise. The Avaya Communicator for Windows soft-client was used for this purpose. For security over the public network, the protocols used between the remote workers and the outside interface of the Avaya SBCE were Transport Layer Security (TLS) as the signaling protocol and Secure Real Time Protocol (SRTP) for the media.

The configuration tasks required to support remote workers are beyond the scope of these Application Notes; hence they are not discussed in this document. Consult [2] in the Additional References, for more information on this topic.
In an actual customer configuration, the enterprise site may include additional network components between the service provider and the Avaya IP Office system, such as routers or data firewalls. A complete discussion of the configuration of these devices is beyond the scope of these Application Notes. However, it should be noted that all SIP and RTP traffic between the service provider and the Avaya IP Office system must be allowed to pass through these devices.

4. Equipment and Software Validated

The following equipment and software were used for the sample configuration provided:

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaya</td>
<td></td>
</tr>
<tr>
<td>Avaya IP Office 500v2</td>
<td>9.1.400.137</td>
</tr>
<tr>
<td>Avaya IP Office Digital Expansion Module DCPx16</td>
<td>9.1.400.137</td>
</tr>
<tr>
<td>Avaya IP Office Manager</td>
<td>9.1.4.0.Build 137</td>
</tr>
<tr>
<td>Avaya IP Office Voicemail Pro</td>
<td>9.1.400.7</td>
</tr>
<tr>
<td>Avaya Session Border Controller for Enterprise, on a Portwell CAD-0208 server.</td>
<td>7.0.0-21-6602</td>
</tr>
<tr>
<td>Avaya 1608 IP Deskphone (H.323)</td>
<td>1.360A</td>
</tr>
<tr>
<td>Avaya 96x1 Series IP Deskphone (H.323)</td>
<td>Avaya IP Deskphone Release 6.6029</td>
</tr>
<tr>
<td>Avaya 1140E IP Deskphone (SIP)</td>
<td>04.04.18.00</td>
</tr>
<tr>
<td>Avaya Digital Deskphone 1408</td>
<td>40.0</td>
</tr>
<tr>
<td>Avaya Digital DeskPhone 9508</td>
<td>0.55</td>
</tr>
<tr>
<td>Avaya Communicator for Windows</td>
<td>2.0.3.33</td>
</tr>
<tr>
<td>XO Communications</td>
<td></td>
</tr>
<tr>
<td>Broadsoft Softswitch</td>
<td>Rel_20.sp1</td>
</tr>
<tr>
<td>SBC Sonus GSX9000</td>
<td>V08.04.08 F005</td>
</tr>
</tbody>
</table>

Compliance Testing is applicable when the tested solution is deployed with a standalone IP Office 500 V2, and also when deployed with all configurations of IP Office Server Edition without T.38 Fax Service. (T.38 fax is not supported on IP Office Server Edition). Note that IP Office Server Edition requires an Expansion IP Office 500 V2 to support analog or digital endpoints or trunks.
5. Configure IP Office

This section describes the Avaya IP Office configuration necessary to support connectivity to the XO Communications SIP Trunking service. Avaya IP Office is configured through the Avaya IP Office Manager PC application. From the PC running IP Office Manager, select **Start ➔ Programs ➔ IP Office ➔ Manager** to launch the application. Navigate to **File ➔ Open Configuration** (not shown), select the proper Avaya IP Office system from the pop-up window, and log in using the appropriate credentials.

A management window will appear similar to the one shown in the next section.

The appearance of the IP Office Manager can be customized using the View menu. In the screens presented in this section, the View menu was configured to show the Navigation pane on the left side and the Details pane on the right side. These panes will be referenced throughout the Avaya IP Office configuration.

Standard feature configurations that are not directly related to the interfacing with the service provider are assumed to be already in place, and they are not part of these Application Notes.
5.1. Licensing

The configuration and features described in these Application Notes require the IP Office system to be licensed appropriately. If a desired feature is not enabled or there is insufficient capacity, contact an authorized Avaya sales representative.

In the reference configuration, **IP500_Lab2** was used as the system name. Under the system name on the Navigation pane, select **License**. Confirm that there is a valid **SIP Trunk Channels** license with sufficient “Instances” in the Details pane, enough to support the number of channels to be deployed on the SIP trunk to the service provider.
5.2. LAN Settings

In the sample configuration, the LAN1 port was used to connect the IP Office to the enterprise network. To access the LAN1 settings, first navigate to System (1) under the system name in the Navigation pane and select the LAN1 → LAN Settings tab in the Details pane. Set the IP Address and IP Mask fields to the IP address and subnet mask assigned to the Avaya IP Office LAN1 port. All other parameters should be set according to customer requirements.

![LAN Settings Table]

On the VoIP tab in the Details pane, the H323 Gatekeeper Enable box is checked to allow the use of Avaya IP Telephones with the H.323 protocol, such as the Avaya 1600 and 96x1 Series IP Deskphones present in the sample configuration. The SIP Trunks Enable box must be checked to enable the configuration of SIP trunks on this interface. The SIP Registrar Enable box is checked to allow the registration of Avaya 1140E Deskphones and the Avaya Communicator Softphones using the SIP protocol. On the Domain Name field, the local SIP registrar domain name `sil.miami.avaya.com` was used. This domain name will need to be configured on the SIP endpoints in order to register with the system. On the Layer 4 Protocol section, the default UDP, TCP and TLS protocols and ports were used.

![VoIP Settings Table]
The **RTP Port Number Range** can be customized to a specific range of receive ports for the RTP media. Based on this setting, Avaya IP Office would request RTP media be sent to a UDP port in the configurable range for calls using LAN1.

In the **Keepalives** section, set the **Scope** field to **RTP**. Set the **Periodic timeout** to **30** and **Initial keepalives** to **Enabled**. This will cause the IP Office to send RTP keepalive packets at the beginning of the calls and periodically thereafter, to avoid problems of media deadlock resulting in no audio situations that can occur with certain types of forwarded calls that are routed from the IP Office back to the network, over the same SIP trunk.

Avaya IP Office can also be configured to mark the Differentiated Services Code Point (DSCP) in the IP header with specific values to support Quality of Services policies for both signaling and media. The **DSCP** field is the value used for media and the **SIG DSCP** is the value used for signaling. The specific values used for the compliance test are shown in the example below.

All other parameters should be set according to customer requirements.
On the **Network Topology** tab in the Details pane, configure the following parameters:

- **Select the Firewall/NAT Type** from the pull-down menu to the option that matches the network configuration. Since no network address translation (NAT) was used in the compliance test, the parameter was set to **Open Internet**. With this configuration, settings obtained by STUN lookups are ignored. The IP address used is the one assigned to the interface.
- **Binding Refresh Time (seconds)** is used to determine the frequency at which Avaya IP Office will send SIP OPTION messages to the SIP trunk using this interface. This parameter was left at the default value 0. With this setting, IP Office will send OPTIONS messages using its default interval of 300 seconds.
- **Set Public Port** to **5060** for **UDP**.
- Defaults were used for all other fields.

![Network Topology Configuration](image-url)
5.3. System Telephony Settings

Navigate to the Telephony ➔ Telephony Tab in the Details Pane. Uncheck the Inhibit Off-Switch Forward/Transfer box to allow call forwarding and call transfers to the PSTN via the SIP trunk to the service provider.
5.4. Twinning Calling Party Settings

Navigate to the Twinning tab on the Details Pane. Uncheck the Send original calling party information for Mobile Twinning box. This will allow the Caller ID for Twinning to be controlled by the setting on the SIP Line (Section 5.7). This setting also impacts the Caller ID for call forwarding.

5.5. System Codecs Settings

Navigate to the Codecs tab in the Details Pane. The RFC2833 Default Payload field allows the manual configuration of the payload type used on SIP calls that are initiated by the IP Office. The default value 101 was used. The list of Available Codecs shows all the codecs supported by the system, and those selected as usable. The Default Codec Selection area enables the codec preference order to be configured on a system-wide basis. The buttons between the two lists can be used to move codecs between the Unused and Selected lists, and to change the order of the codecs in the Selected codecs list. By default, all IP (SIP and H.323) lines and extensions will use this system default codec selection, unless configured otherwise for a specific line or extension.

Click OK (not shown) to save any changes made to any of the various System tabs.
5.6. IP Route

In the reference configuration, the IP Office LAN1 interface and the private interface of the Avaya SBCE resided on the same subnet, so an IP route was not necessary. In an actual customer configuration, these two interfaces may be in different subnets, and in that case an IP route would need to be created to specify the IP address of the local gateway or router where the IP Office needs to send the packets, in order to reach the subnet where the Avaya SBCE private interface is located.

To create an IP route, on the left navigation pane, right-click on IP Route. Select New (not shown).

- Set the **IP Address** and **IP Mask** of the subnet of the private side of the Avaya SBCE, or enter 0.0.0.0 to make this the default route.
- Set **Gateway IP Address** to the IP Address of the default router in the IP Office subnet.
- Set **Destination** to LAN1 from the pull-down menu.
- Click **OK** (not shown) to save any changes.
5.7. Administer SIP Line

A SIP line is created to establish the SIP connection between the Avaya IP Office and the private interface of the Avaya SBCE. This line will carry outbound and inbound traffic to and from the service provider.

The recommended method for configuring a SIP Line is to use the template associated with these Application Notes. The template is an .xml file that can be used by IP Office Manager to create a SIP Line. Follow the steps in Section 5.7.1 and Section 5.7.2 to create the SIP Line from the template.

Some items relevant to a specific customer environment are not included in the template or may need to be updated after the SIP Line is created. Examples include the following:

- IP addresses
- SIP Credentials (if applicable)
- SIP URI entries
- Setting of the Use Network Topology Info field on the Transport tab.

Therefore, it is important that the SIP Line configuration be reviewed and updated if necessary after the SIP Line is created via the template. The resulting SIP Line data can be verified against the manual configuration shown in Sections 5.7.3 – 5.7.8.

Alternatively, a SIP Line can be created manually. To do so, right-click Line in the Navigation Pane and select New → SIP Line. Then, follow the steps outlined in Sections 5.7.3 – 5.7.8.
5.7.1. Importing a SIP Line Template

Note – DevConnect generated SIP Line templates are always exported in an XML format. These XML templates do not include sensitive customer specific information and are therefore suitable for distribution. The XML format templates can be used to create SIP trunks on both IP Office Standard Edition (500v2) and IP Office Server Edition systems. Alternatively, binary templates may be generated. However, binary templates include all the configuration parameters of the Trunk, including sensitive customer specific information. Therefore, binary templates should only be used for cloning trunks within a specific customer’s environment.

1. Copy a previously created template file to a location (e.g., \Temp) on the same computer where IP Office Manager is installed. By default, the template file name will have the format AF_<user supplied text>_SIPTrunk.xml, where the <user supplied text> portion is entered during template file creation.

 Note – If necessary, the <user supplied text> portion of the template file name may be modified, however the AF_<user supplied text>_SIPTrunk.xml format of the file name must be maintained. For example, an original template file AF_TEST_SIPTrunk.xml could be changed to AF_Test1_SIPTrunk.xml. The template file name is selected in Section 5.7.2 to create a new SIP Line.

2. Verify that Template Options are enabled in IP Office Manager. In IP Office Manager, navigate to File → Preferences. In the IP Office Manager Preferences window that appears, select the Visual Preferences tab. Check the box next to Enable Template Options. Click OK.
3. Import the template into IP Office Manager. From IP Office Manager, select **Tools ➔ Import Templates in Manager**.

![IP Office Manager Interface](image)

4. A folder browser will open (not shown). Select the directory used in **step 1** to store the template (e.g., `\Temp`). In the reference configuration, template file «**AF_XO_Communications_SIPTrunk.xml**» was imported. The template file is automatically copied into the default template location, `C:\Program Files\Avaya\IP Office\Manager\Templates`.

5. After the import is complete, a final import status pop-up window will open stating success or failure. **Click OK**.
Note – Windows 7 (and later) locks the Avaya IP Office 9.1 \Templates directory, and it cannot be viewed. To enable browsing of the \Templates directory, open Windows Explorer, navigate to C:\Program Files\Avaya\IP Office\Manager (or C:\Program Files (x86)\Avaya\IP Office\Manager), and then click on the Compatibility files option shown below. The \Templates directory and its contents can then be viewed.
5.7.2. Creating a SIP Trunk from an XML Template

1. To create the SIP Trunk from a template, right-click on Line in the Navigation Pane, and select New SIP Trunk from Template.

2. In the subsequent Template Type Selection pop-up window, from the Service Provider pull-down menu, select the XML template name from Section 5.7.1.

 Note – The drop down menu will display the `<user supplied text>` part of the template file name (see Section 5.7.1). If the Display All box is checked, then the full template file name is displayed.

 Click Create new SIP Trunk to finish creating the trunk.

3. Once the SIP Line is created, verify the configuration of the SIP Line with the configuration shown in Sections 5.7.3 – 5.7.8.
5.7.3. SIP Line Tab

On the SIP Line tab in the Details Pane, configure (or verify) the parameters as shown below:

- Leave the ITSP Domain Name field blank. IP Office will use the IP address entered in the Transport / ITSP Proxy Address field in Section 5.7.4 as the host portion of the SIP URI of SIP headers in messages sent to the Avaya SBCE.
- Check the In Service box.
- Check the Check OOS box.
- On the Forwarding and Twinning section, set Send Caller ID to Diversion Header. Avaya IP Office will include the Diversion header to be able to send the original calling party ID, in scenarios of call forward to the PSTN and twinning.
- On the Redirect and Transfer section, Incoming Supervised REFER and Outbound Supervised REFER were set to Never. REFER was disabled during the compliance test. See Section 2.2 for details. If blind call transfers to the PSTN are not required, REFER could then be enabled by setting Incoming Supervised REFER and Outbound Supervised REFER to Always.
- Default values may be used for all other parameters.
- Click OK.
5.7.4. **Transport Tab**

Select the **Transport** tab and set the following:

- Set the **ITSP Proxy Address** to the IP address of the private interface of the Avaya SBCE.
- Set the **Layer 4 Protocol** to **UDP**.
- Set **Use Network Topology Info** to **LAN1** as configured in **Section 5.2**.
- Set the **Send Port** to **5060**.
- Default values may be used for all other parameters.
- Click **OK**.

![SIP Line - Line 17*](image)
5.7.5. **SIP URI Tab**

A SIP URI entry needs to be created to match each number that Avaya IP Office and the service provider will accept on this line. Select the **SIP URI** tab; click the **Add** button and the **New Channel** area will appear at the bottom of the pane.

- **Set Local URI, Contact and Display Name to Use Internal Data.** This setting allows calls on this line that have a SIP URI that matches the number set in the **SIP** tab of any user as shown later in **Section 5.8**.
- **Set PAI to None.**
- **Under Registration, select 0: <None>** from the pull-down menu. XO Communications did not require SIP trunk registration.
- **Associate this line with an incoming line group by entering a line group number in the **Incoming Group** field.** This line group number will be used in defining incoming call routes for this line. Similarly, associate the line to an outgoing line group using the **Outgoing Group** field. The outgoing line group number is used in defining short codes for routing outbound traffic to this line. For the compliance test, a new incoming and outgoing group 17 was defined that only contains this line (line 17).
- **Set Max Calls per Channel** to the number of simultaneous calls to be allowed on the SIP trunk using this SIP URI pattern.
- **Click OK.**
Additional SIP URIs may be required to allow inbound calls to numbers not associated with a user, such as a short code. These URIs are created in the same manner as shown previously, with the exception that the incoming DID number is entered directly in the Local URI, Contact, and Display Name fields.

5.7.6. VoIP Tab

Select the VoIP tab to set the Voice over Internet Protocol parameters of the SIP line. Set the parameters as shown below:

- In the sample configuration, the Codec Selection was configured using the Custom option, allowing an explicit ordered list of codecs to be specified. The buttons allow setting the specific order of preference for the codecs to be used on the line, as shown. During the compliance test, G.729A and G.711ULAW, the codecs supported by XO Communications on the SIP trunk, in this order of preference, were placed under the Selected column.
- Set Fax Transport Support to T38 Fallback. XO Communications supports T.38 fax with fallback to G.711 pass-through.
- Set the DTMF Support field to RFC2833. This directs Avaya IP Office to send DTMF tones using RTP events messages as defined in RFC2833.
- Check the Re-invite Supported box to allow for codec re-negotiation in cases where the target of an incoming call or transfer does not support the codec originally negotiated on the trunk.
- Check the PRACK/100rel Supported box, to advertise the support for provisional responses and Early Media to the service provider.
- Default values may be used for all other parameters.
- Click OK (not shown).
5.7.7. T38 Fax Tab.

On the T38 Fax tab, uncheck the **Use Default Values** box at the bottom of the tab and set the following:

- Set the **T38 Fax Version** to version 0.
- Check the **Disable T30 ECM** box.
- Default values may be used for all other parameters.
- Click **OK**.
5.7.8. SIP Advanced Tab

On the SIP Advanced tab, check the boxes for Emulate NOTIFY for REFER and No REFER if using Diversion. These settings are only necessary in the event that REFER is enabled on the SIP Line, as discussed earlier in Section 5.7.4. All other fields retained their default values.

Click OK.

No changes were made to the SIP Credentials and the Engineering tabs, so they will not be visited.
5.8. Users

Configure the SIP parameters for each user that will be placing and receiving calls via the SIP line defined in Section 5.7. To configure these settings, navigate to User in the left Navigation Pane and select the name of the user to be modified. In the example below, the name of the user is Extn 1102dcp. Select the SIP tab in the Details Pane.

The values entered for the SIP Name and Contact fields are used to match against the SIP URI of incoming calls without having to enter this number as an explicit SIP URI for the SIP line (Section 5.7.5). The example below shows the settings for user “Extn1102dcp”. The SIP Name and Contact are set to one of the DID numbers assigned to the enterprise by XO Communications. The SIP Display Name (Alias) parameter can optionally be configured with a descriptive name. Click OK (not shown) to save any changes.
5.9. Incoming Call Route

Incoming call routes map inbound DID numbers on a specific line to internal extensions, hunt groups, short codes, etc., within the IP Office system. Incoming call routes are defined for each DID number assigned by the service provider.

In a scenario like the one used for the compliance test, only one incoming route was needed, which allowed any incoming number arriving on the SIP trunk to reach any predefined extension in the IP Office. The routing decision for the call is based on the parameters previously configured for the SIP URI (Section 5.7.5) and the users SIP Name and Contact, already populated with the assigned DID numbers (Section 5.8).

To add a new incoming call route, from the left Navigation Pane, right-click on Incoming Call Route and select New (not shown). On the Details Pane, under the Standard tab, set the parameters as show below:

- Set Bearer Capacity to Any Voice.
- Set the Line Group Id to the incoming line group of the SIP line defined in Section 5.7.
- Default values may be used for all other parameters.

<table>
<thead>
<tr>
<th>IP Offices</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>□ BOOTP (3)</td>
<td></td>
</tr>
<tr>
<td>□ Operator (3)</td>
<td></td>
</tr>
<tr>
<td>□ IP300_Lab2</td>
<td></td>
</tr>
<tr>
<td>□ System (1)</td>
<td></td>
</tr>
<tr>
<td>□ Line (20)</td>
<td></td>
</tr>
<tr>
<td>□ Control Unit (4)</td>
<td></td>
</tr>
<tr>
<td>□ Extension (47)</td>
<td></td>
</tr>
<tr>
<td>□ User (49)</td>
<td></td>
</tr>
<tr>
<td>□ Group (1)</td>
<td></td>
</tr>
<tr>
<td>□ Short Code (66)</td>
<td></td>
</tr>
<tr>
<td>□ Service (0)</td>
<td></td>
</tr>
<tr>
<td>□ RAS (1)</td>
<td></td>
</tr>
<tr>
<td>□ Incoming Call Route (1)</td>
<td></td>
</tr>
<tr>
<td>□ WAN Port (0)</td>
<td></td>
</tr>
<tr>
<td>□ Directory (0)</td>
<td></td>
</tr>
<tr>
<td>□ Time Profile (0)</td>
<td></td>
</tr>
<tr>
<td>□ Firewall Profile (1)</td>
<td></td>
</tr>
<tr>
<td>□ IP Route (5)</td>
<td></td>
</tr>
<tr>
<td>□ Account Code (0)</td>
<td></td>
</tr>
<tr>
<td>□ License (75)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Voice Recording</th>
<th>Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearer Capability</td>
<td>Any Voice</td>
<td></td>
</tr>
<tr>
<td>Line Group ID</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Incoming Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incoming Sub Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incoming CLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priority</td>
<td>1 - Low</td>
<td></td>
</tr>
<tr>
<td>Tag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hold Music Source</td>
<td>System Source</td>
<td></td>
</tr>
<tr>
<td>Ring Tone Override</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
Under the **Destinations** tab, enter “.” for the **Default Value**. This setting will allow the call to be routed to any destination with a value on its **SIP Name** field, entered on the **SIP** tab of that **User**, which matches the number present on the user part of the “To” header of the incoming INVITE.

Additional incoming call routes may be required to allow inbound calls to numbers not associated with a user, such as a short code. These routes are created in the same manner as shown, with the exception that the incoming DID number is entered directly in the **Incoming Number** field on the **Standard** tab, and the specific destination (short code, etc.) needs to be entered on the **Default Value** field of the **Destinations** tab. Click **OK** (not shown) to save any changes.

5.10. Short Code

In the reference configuration, Avaya IP Office used Alternate Route Selection (ARS) to route outbound traffic to the SIP line. A short code is needed to send the outbound traffic to the ARS route. To create the short code used for ARS, right-click on **Short Code** in the Navigation Pane and select **New** (not shown). The screen below shows the creation of the short code 9N used in the reference configuration. When the Avaya IP Office users dialed 9 plus any number N, calls were directed to **Line Group 50: Main**, configurable via ARS and defined next in Section 5.12.

On the **Short Code** tab in the Details Pane, configure the parameters as shown below.

- **In the Code** field, enter the dial string which will trigger this short code, in this case 9N. This short code will be invoked when the user dials 9 followed by any number.
- **Set Feature to Dial.** This is the action that the short code will perform.
- **Set Telephone Number to N.** The value N represents the number dialed by the user after removing the 9 prefix.
- **Set the Line Group ID** to the ARS route to be used. In the example shown, the call is directed to **Line Group 50: Main**.
- **Click OK** (not shown).
5.11. Alternate Route Selection

While detailed coverage of ARS is beyond the scope of these Application Notes, this section includes some basic screen illustrations of the ARS settings used during the compliance test.

The following screen shows the ARS configuration for the route **50: Main**. The example shows a subset of the dialed strings tested as part of the compliance test. See Section 2.1 for the complete list of call types tested. Note that the sequence of \(\times \)s used in the **Code** column of some entries specifies the exact number of digits to be expected, following the access code and the first digits on the string. This type of setting results in a much quicker response in the delivery of the calls by the IP Office.

For example, during the compliance test, to dial local PSTN calls the user dialed 9 plus the 10 digit local number, starting with the area code 972 and then the remaining 7 digits.
5.12. Save Configuration

Navigate to **File → Save Configuration** in the menu bar at the top left of the screen to save the configuration performed in the preceding sections.

The following will appear, with either **Merge** or **Immediate** selected, based on the nature of the configuration changes made since the last save. Note that clicking **OK** may cause a service disruption. Click **OK** to proceed.
6. Configure Avaya Session Border Controller for Enterprise

This section describes the configuration of the Avaya SBCE. It is assumed that the initial installation of the Avaya SBCE, the assignment of the management interface IP Address and license installation have already been completed; hence these tasks are not covered in these Application Notes. For more information on the installation and initial provisioning of the Avaya SBCE consult the Avaya SBCE documentation in the Additional References section.

6.1. System Access

Access the Session Border Controller web management interface by using a web browser and entering the URL https://<ip-address>, where <ip-address> is the management IP address configured at installation. Log in using the appropriate credentials.

Once logged in, the Dashboard screen is presented. The left navigation pane contains the different available menu items used for the configuration of the Avaya SBCE. Check the status of the License State field. In the example below, the status OK indicates that a valid license is present.
6.2. System Management

To view current system information, select **System Management** on the left navigation pane. A list of installed devices is shown in the **Devices** tab on the right pane. In the reference configuration, a single device named **Micro_SBCE** is shown. The management IP address that was configured during installation is shown here. Note that the management IP address needs to be on a subnet separate from the ones used in all other interfaces of the Avaya SBCE, segmented from all VoIP traffic. Verify that the **Status** is **Commissioned**, indicating that the initial installation process of the device has been previously completed, as shown on the screen below.

To view the network configuration assigned to the Avaya SBCE, click **View** on the screen above. The **System Information** window is displayed, as shown on the screen on the next page, containing the current device configuration and network settings.
Note that the A1 and B1 interfaces correspond to the private and public interfaces for the Avaya SBCE. The highlighted A1 and B1 IP addresses are the ones relevant to these Application Notes. Other IP addresses assigned to these interfaces on the screen below are used to support remote workers and they are not discussed in this document. On the **License Allocation** area of the **System Information**, verify that the number of **Standard Sessions** is sufficient to support the desired number of simultaneous SIP calls across all SIP trunks at the enterprise. The number of sessions and encryption features are primarily controlled by the license file installed.

<table>
<thead>
<tr>
<th>General Configuration</th>
<th>Device Configuration</th>
<th>License Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appliance Name</td>
<td>HA Mode</td>
<td>Standard Sessions</td>
</tr>
<tr>
<td>Box Type</td>
<td>No</td>
<td>Requested: 500</td>
</tr>
<tr>
<td>Deployment Mode</td>
<td>Two Bypass Mode</td>
<td>Advanced Sessions</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Requested: 100</td>
</tr>
</tbody>
</table>

Other IP addresses assigned to these interfaces on the screen below are used to support remote workers and they are not discussed in this document.

Network Configuration

<table>
<thead>
<tr>
<th>IP</th>
<th>Public IP</th>
<th>Netmask</th>
<th>Gateway</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5.5.152</td>
<td>10.5.5.152</td>
<td>255.255.255.0</td>
<td>10.6.5.254</td>
<td>A1</td>
</tr>
<tr>
<td>10.5.5.153</td>
<td>10.5.5.153</td>
<td>255.255.255.0</td>
<td>10.6.5.254</td>
<td>A1</td>
</tr>
<tr>
<td>172.16.157.139</td>
<td>172.16.157.139</td>
<td>255.255.255.129</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>172.16.157.160</td>
<td>172.16.157.160</td>
<td>255.255.255.129</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>172.16.157.161</td>
<td>172.16.157.161</td>
<td>255.255.255.129</td>
<td>B1</td>
<td></td>
</tr>
</tbody>
</table>

DNS Configuration

Primary DNS	10.10.216.122
Secondary DNS	192.168.153.242
DNS Location	DMZ
DNS Client IP	172.16.157.139

Management IP(s)

<table>
<thead>
<tr>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.10.75</td>
</tr>
</tbody>
</table>
6.3. Network Management

The network configuration parameters should have been previously specified during installation of the Avaya SBCE. In the event that changes need to be made to the network configuration, they can be entered here.

Select Network Management under Device Specific Settings on the left-side menu. Under Devices in the center pane, select the device being managed, Micro_SBCE in the sample configuration. On the Networks tab, verify or enter the network information as needed. Note that the A1 and B1 interfaces correspond to the private and public interfaces for the Avaya SBCE. In the configuration used during the compliance test, IP address 10.5.5.152 was assigned to interface A1, and IP address 172.16.157.139 was assigned to interface B1. Other IP addresses assigned to these interfaces on the screen below are used to support remote workers and they are not discussed in this document. See Figure 1 in Section 3.

On the Interfaces tab, verify the Status is Enabled for both the A1 and B1 interfaces. Click the Disabled button on each interface to enable it if necessary.
6.4. Media Interfaces

Media Interfaces were created to specify the IP address and port range in which the Avaya SBCE will accept media streams on each interface. Packets leaving the interfaces of the Avaya SBCE will advertise this IP address, and one of the ports in this range as the listening IP address and port in which it will accept media from the Call or the Trunk Server.

To add the Media Interface in the enterprise direction, select Media Interface from the Device Specific Settings menu on the left-hand side, select the Micro_SBCE device and click the Add button (not shown). On the Add Media Interface screen, enter an appropriate Name for the Media Interface. On the IP Address area, select from the drop-down menus the network associated with the private interface of the SBCE (A1) and the private IP Address used for SIP trunking. The Port Range was left at the default values of 35000-40000. Click Finish.

![Private_med Media Interface](image)

A Media Interface facing the public network side was similarly created with the name Public_med, as shown below. On the IP Address drop-down menus, the network associated with the public interface of the SBCE (B1) and the public IP Address used for SIP trunking are selected. The Port Range was left at the default values. Click Finish.

![Public_med Media Interface](image)
6.5. Signaling Interfaces

Signaling Interfaces are created to specify the IP addresses and ports in which the Avaya SBCE will expect the signaling traffic in the connected networks.

To add the Signaling Interface in the enterprise direction, select Signaling Interface from the Device Specific Settings menu on the left-hand side, select the Micro_SBCE device and click the Add button (not shown). On the Add Signaling Interface screen, enter an appropriate Name for the interface. Under IP Address, select the network associated with the private interface of the SBCE (A1) and the private IP Address used for SIP trunking, from the drop-down menus. Enter 5060 for UDP Port, since UDP port 5060 is used for signaling traffic from IP Office in the sample configuration, Section 5.7.4. Click Finish.

<table>
<thead>
<tr>
<th>Add Signaling Interface</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Private_sig</td>
</tr>
<tr>
<td>IP Address</td>
<td>Network_A1 (A1, VLAN 0)</td>
</tr>
<tr>
<td>TCP Port</td>
<td>Leave blank to disable</td>
</tr>
<tr>
<td>UDP Port</td>
<td>Leave blank to disable</td>
</tr>
<tr>
<td>TLS Port</td>
<td>Leave blank to disable</td>
</tr>
<tr>
<td>TLS Profile</td>
<td>None</td>
</tr>
<tr>
<td>Enable Shared Control</td>
<td></td>
</tr>
<tr>
<td>Shared Control Port</td>
<td></td>
</tr>
</tbody>
</table>

5060
A second Signaling Interface with the name `Public_sig` was similarly created in the service provider’s direction. On the IP Address drop-down menus, the network associated with the public interface of the SBCE (B1) and the public IP Address used for SIP trunking are selected. Enter **5060** for UDP Port. Click **Finish**.
6.6. Server Interworking
Interworking Profile features are configured to facilitate the interoperability between the enterprise SIP-enabled solution (Call Server) and the SIP trunk service provider (Trunk Server).

6.6.1. Server Interworking Profile – Avaya IP Office
Interworking profiles can be created by cloning one of the pre-defined default profiles, or by adding a new profile. To configure the interworking profile in the enterprise direction, select Global Profiles → Server Interworking on the left navigation pane. Under Interworking Profiles, select avaya-ru from the list of pre-defined profiles. Click Clone.

Enter a descriptive name for the cloned profile. Click Finish.
On the newly cloned *IP Office* interworking profile, scroll down on the **General** tab and click **Edit** (not shown). On the **General** screen, check the **T.38 Support** box. All other parameters retain their default values. Click **Next**.
The Timers, Privacy, URI Manipulation and Header Manipulation tabs contain no entries or keep their default values. The Advanced tab settings are shown on the screen below:

![Advanced tab settings](image)

6.6.2. Server Interworking Profile – Service Provider

A second interworking profile in the direction of the SIP trunk to the service provider was created, by adding a new profile in this case. Select Global Profiles → Server Interworking on the left navigation pane and click Add (not shown). Enter a descriptive name for the new profile. Click Next.

![Server Interworking Profile](image)
On the **General** tab, default values were used for all parameters except for **T.38 Support**, which was enabled. Click **Next**.
Click **Next** on the **SIP Timers** and **Privacy** tabs (not shown). On the **Advanced/DTMF** tab, select **Both Sides** under **Record Routes**. Accept the defaults settings for all other fields. Click **Finish**.

![Interworking Profile](image)

- **Record Routes**
 - None
 - Single Side
 - **Both Sides**
 - Dialog-Initiate Only (Single Side)
 - Dialog-Initiate Only (Both Sides)

- **Include End Point IP for Context Lookup**
 - OFF

- **Extensions**
 - **None**

- **Diversion Manipulation**
 - OFF

- **Diversion Condition**
 - **None**

- **Diversion Header URI**
 - OFF

- **Has Remote SBC**
 - **ON**

- **Route Response on Via Port**
 - OFF

- **DTMF**
 - **None**
 - SIP NOTIFY
 - SIP INFO

Click **Finish**.
6.7. Server Configuration

Server Profiles are created to define the parameters for the Avaya SBCE two peers, i.e., Avaya IP Office (Call Server) and the SIP Proxy at the service provider’s network (Trunk Server).

6.7.1. Server Configuration Profile – Avaya IP Office

From the Global Profiles menu on the left-hand navigation pane, select Server Configuration and click the Add button (not shown) to add a new profile for the Call Server. Enter an appropriate Profile Name similar to the screen below. Click Next.

On the Add Server Configuration Profile Tab select Call Server from the drop down menu for the Server Type. On the IP Addresses / FQDN field, enter the IP address of the IP Office LAN1, as defined in Section 5.2. Enter 5060 under Port and select UDP for Transport. The transport protocol and port selected here must match the values used on the IP Office SIP line on Section 5.7. Click Next.
Click **Next** on the **Authentication** and **Heartbeat** tabs (not shown). On the **Advanced** tab, select from the **Interworking Profile** drop down menu the **IP Office** profile created in **Section 6.6.1**. Click **Finish**.

6.7.2. Server Configuration Profile – Service Provider

Similarly, to add the profile for the Trunk Server, click the **Add** button on the **Server Configuration** screen (not shown). Enter an appropriate **Profile Name** similar to the screen below. Click **Next**.

On the **Add Server Configuration Profile** Tab select **Trunk Server** from the drop down menu for the **Server Type**. On the **IP Addresses / FQDN** field, enter the IP address of the service provider SIP proxy server. Enter **5060** under **Port**, and select **UDP** for **Transport**. Click **Next**.
Click **Next** on the **Authentication** tab (not shown).

On the **Heartbeat** tab, OPTIONS can be configured to periodically check the integrity of the SIP trunk to the service provider. To do this, set the following:

- Check the **Enable Heartbeat** box.
- Under **Method**, select **OPTIONS** from the drop down menu.
- **Frequency**: Enter the amount of time (in seconds) between OPTIONS messages that will be sent from the enterprise to the service provider proxy server. **300** seconds was the value used during the compliance test.
- The **From URI** and **To URI** entries for the OPTIONS messages were built using the IP addresses of the public interface of the Avaya SBCE and the service provider proxy server respectively.
- Click **Next**.

![Heartbeat Tab Configuration](image)

On the **Advanced** tab, select from the **Interworking Profile** drop down menu the **Service Provider** profile created in **Section 6.6.2**. Click **Finish**.

![Advanced Tab Configuration](image)
6.8. Routing
Routing profiles define a specific set of routing criteria that is used, in addition to other types of domain policies, to determine the path that the SIP traffic will follow as it flows through the Avaya SBCE interfaces. Two Routing Profiles were created in the test configuration, one for inbound calls, with the IP Office as the destination, and the second one for outbound calls, which are routed to the XO Communications SIP trunk.

6.8.1. Routing Profile – Avaya IP Office
To create the inbound route, select the Routing tab from the Global Profiles menu on the left-hand side and select Add (not shown). Enter an appropriate Profile Name similar to the example below. Click Next.

On the Routing Profile tab, click the Add button to enter the next-hop address.

Enter 1 under Priority/Weight. Under Server Configuration, select IP Office. The Next Hop Address field will be populated with the IP address, port and protocol defined for the IP Office Server Configuration Profile, created in Section 6.7.1. Defaults were used for all other parameters. Click Finish.
6.8.2. Routing Profile – Service Provider

Back at the Routing tab, select Add (not shown) to repeat the process in order to create the outbound route. Enter an appropriate Profile Name similar to the example below. Click Next.

<table>
<thead>
<tr>
<th>Profile Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route to SP</td>
</tr>
</tbody>
</table>

On the Routing Profile tab, click the Add button to enter the next-hop address. Enter 1 under Priority/Weight. Under Server Configuration, select Service Provider. The Next Hop Address field will be populated with the IP address, port and protocol defined for the Service Provider Server Configuration Profile, created in Section 6.7.2. Defaults were used for all other parameters. Click Finish.

<table>
<thead>
<tr>
<th>URI Group</th>
<th>Time of Day</th>
<th>Load Balancing</th>
<th>Transport</th>
<th>Next Hop In-Dialog</th>
<th>Ignore Route Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>default</td>
<td>Priority</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAPTR</td>
<td>Next Hop Priority</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priority / Weight</th>
<th>Server Configuration</th>
<th>Next Hop Address</th>
<th>Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Service Provider</td>
<td>192.168.163.5060 (UDP)</td>
<td>None</td>
</tr>
</tbody>
</table>
6.9. Topology Hiding

Topology Hiding is a security feature that allows the modification of several SIP headers, preventing private enterprise network information from being propagated to the untrusted public network.

Topology Hiding can also be used as an interoperability tool to adapt the host portion in the SIP headers to the IP addresses or domains expected on the service provider and the enterprise networks. For the compliance test, the Topology Hiding Profiles were created by cloning the default profile. Only the minimum configuration required to achieve interoperability on the SIP trunk was performed. Additional steps could be taken in this section, in agreement with the service provider, to further mask the information that is sent from the enterprise to the public network.

6.9.1. Topology Hiding Profile – Avaya IP Office

To add the Topology Hiding Profile in the enterprise direction, select Topology Hiding from the Global Profiles menu on the left-hand side, select default from the list of pre-defined profiles and click the Clone button (not shown). Enter a Clone Name such as the one shown below. Click Finish.

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clone Name</td>
<td>IP Office</td>
</tr>
</tbody>
</table>

Finish
On the newly cloned IP Office profile screen, click the Edit button (not shown).

During the compliance test, IP addresses instead of domains names were used in the host part of the SIP URIs in all SIP headers between the IP Office and the Avaya SBCE. Note that since the default action of Auto implies the insertion of IP addresses in the host portion of these headers, it was not necessary to modify any of the headers sent to the enterprise. Default values were used for all fields. Click Finish.

6.9.2. Topology Hiding Profile – Service Provider

A Topology Hiding profile named Service Provider was similarly configured in the direction of the SIP trunk to the service provider. Since IP addresses were also used in the host part of the SIP URIs of SIP headers between the Avaya SBCE and the XO Communications SIP proxy, the default action Auto was used. The screen below shows the Service Provider profile once the configuration was completed.
6.10. Application Rules

Application Rules define the types of SIP-based Unified Communications (UC) applications to be protected by the Avaya SBCE, as well as the maximum number of concurrent sessions allowed to be processed by the device. A single new Application Rule was created, by cloning the pre-defined default-trunk rule.

Select Application Rules under the Domain Policies menu on the left hand side, select the default-trunk Application Rule and click Clone.

Under Clone Name enter the new rule name. Click Finish to save.
On the Application Rules screen, select the newly created rule and click **Edit** (not shown). For SIP trunking, **Maximum Concurrent Sessions** and **Maximum Sessions Per Endpoint** should have the same value. In the example below, they were set to **500**, which is the number of maximum simultaneous sessions supported on the Avaya SBCE Portwell CAD-0208 platform. Click **Finish**.

![Editing Rule: Sessions-500](image)

<table>
<thead>
<tr>
<th>Application Type</th>
<th>In</th>
<th>Out</th>
<th>Maximum Concurrent Sessions</th>
<th>Maximum Sessions Per Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>✔</td>
<td>✔</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Video</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous

- **CDR Support**: None
 - CDR w/ RTP
 - CDR w/o RTP
- **RTCP Keep-Alive**: None
6.11. End Point Policy Groups

End Point Policy Groups associate the different sets of rules under Domain Policies (Application, Media, Signaling, etc.) to be applied to specific SIP messages traversing through the Avaya SBCE. In the reference configuration, the End Point Policy Groups used default sets of rules already pre-defined in the configuration, with the exception of the new Application Rule defined in Sections 6.10. Please note that changes should not be made to any of the defaults. If changes are needed, it is recommended to create a new rule by cloning one of the defaults and then make the necessary changes to the new rule.

6.11.1. End Point Policy Group – Avaya IP Office

To create an End Point Policy Group for the enterprise, select End Point Policy Groups under the Domain Policies menu. Select Add.

Enter an appropriate name in the Group Name field. Click Next.
In the Policy Group tab, defaults were used for all fields, with the exception of the Application Rule, where the \textit{Sessions=500} rule created in \textbf{Section 6.10} was selected. Click Finish.

displaying a table with the following entries:

\begin{tabular}{|l|c|}
\hline
\textbf{Application Rule} & \textit{Sessions=500} \\
\hline
\textbf{Border Rule} & \textit{default} \\
\hline
\textbf{Media Rule} & \textit{default-low-med} \\
\hline
\textbf{Security Rule} & \textit{default-low} \\
\hline
\textbf{Signaling Rule} & \textit{default} \\
\hline
\end{tabular}

6.11.2. End Point Policy Group – Service Provider

A second End Point Policy Group was created for the service provider, repeating the steps previously described. In the Policy Group tab, all fields used one of the default sets already pre-defined in the configuration, with the exception of the Application Rule, where the \textit{Sessions=500} rule created in \textbf{Section 6.10} was used.

The screen below shows the End Point Policy Group named \textit{Service Provider} after the configuration was completed.
6.12. End Point Flows

End Point Flows determine the path to be followed by the packets traversing through the Avaya SBCE. They also combine the different sets of rules and profiles previously configured, to be applied to the SIP traffic traveling in each direction.

6.12.1. End Point Flow – Avaya IP Office

To create the call flow toward the enterprise, from the Device Specific menu, select End Point Flows, then select the Server Flows tab. Click Add (not shown). The screen below shows the flow named IP Office Flow created in the sample configuration. The flow uses the interfaces, policies, and profiles defined in previous sections. Note that the Routing Profile selection is the profile created for the Service Provider in Section 6.8.2, which is the reverse route of the flow. Click Finish.
6.12.2. End Point Flow – Service Provider

A second Server Flow with the name **SIP Trunk Flow** was similarly created in the network direction. The flow uses the interfaces, policies, and profiles defined in previous sections. Note that the **Routing Profile** selection is the profile created for the IP Office in Section 6.8.1, which is the reverse route of the flow. Click **Finish**.

![Edit Flow: SIP Trunk Flow](image)
7. XO Communications SIP Trunking Service Configuration

XO Communications is responsible for the configuration of the XO Communications SIP Trunking service. The customer will need to provide the IP address used to reach the Avaya SBCE at the enterprise. XO Communications will provide the customer the necessary information to configure the SIP trunk connection from the enterprise site to the network, including:

- IP address of the XO Communications SIP Proxy server.
- Supported codecs and order of preference.
- DID numbers.
- All IP addresses and port numbers used for signaling or media that will need access to the enterprise network through any security devices.

This information is used to complete the configuration of the Avaya IP Office and the Avaya SBCE discussed in the previous sections.

8. Verification Steps

The following sections include steps that may be used to verify the configuration of the Avaya IP Office and the Avaya SBCE with the XO Communications SIP Trunking service.

8.1. Avaya IP Office

The Avaya IP Office System Status and Monitor applications are useful tools used for the verification and troubleshooting of the SIP connection to the service provider via the Avaya SBCE.

8.1.1. System Status

The Avaya IP Office System Status application can be used to verify the service state of the SIP line. Launch the application from **Start → Programs → IP Office → System Status** on the PC where Avaya IP Office Manager was installed. Under **Control Unit IP Address** select the IP address of the IP Office system under verification. Log in using the appropriate credentials.
Select the SIP line of interest from the left pane (Line 17 in the reference configuration). On the Status tab in the right pane, verify that the Current State is Idle for each channel (assuming no active calls at present time).

Select the Alarms tab and verify that no alarms are active on the SIP line.
8.1.2. Monitor

The Avaya IP Office Monitor application can be used to monitor and troubleshoot signaling messaging on the SIP trunk. Launch the application from **Start → Programs → IP Office → Monitor** on the PC where Avaya IP Office Manager was installed. Click the **Select Unit** icon on the taskbar and select the IP address of the IP Office system under verification.

![Avaya IP Office Monitor](image)

Click the **Trace Options** icon on the taskbar and select the **SIP** tab to modify the threshold used for capturing events, types of packets to be captured, filters, etc. Additionally, the color used to represent the packets in the trace can be customized by right clicking on the type of packet and selecting the desired color.
8.2. Avaya Session Border Controller for Enterprise

There are several links and menus located on the taskbar at the top of the screen of the web interface that can provide useful diagnostic or troubleshooting information.

Alarms: Provides information about the health of the SBC.

Incidents: Provides detailed reports of anomalies, errors, policies violations, etc.

Status: Statistical and current status information. The **Server Status** screen below provides information about the condition of the connection to the Service Provider. This requires Heartbeat to be enabled on the Server Configuration profile, as configured in **Section 6.7.2**.
Diagnostics: This screen provides a variety of tools to test and troubleshoot the Avaya SBCE network connectivity.

Additionally, the Avaya SBCE contains an internal packet capture tool that allows the capture of packets on any of its interfaces, saving them as *pcap* files. Navigate to **Device Specific Settings → Troubleshooting → Trace**. Select the **Packet Capture** tab, set the desired configuration for the trace and click **Start Capture**.
Once the capture is stopped, click the **Captures** tab and select the proper pcap file. Note that the date and time is appended to the filename specified previously. The file can now be saved to the local PC, where it can be opened with an application such as Wireshark.

<table>
<thead>
<tr>
<th>Devices</th>
<th>Packet Capture</th>
<th>Captures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro_SDCE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File Name</th>
<th>File Size (bytes)</th>
<th>Last Modified</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>test_20151015105210.pcap</td>
<td>319,498</td>
<td>October 15, 2015 10:52:49 AM EDT</td>
<td>Delete</td>
</tr>
</tbody>
</table>

9. Conclusion

These Application Notes describe the procedures required to configure SIP trunk connectivity between Avaya IP Office Release 9.1 and Avaya Session Border Controller Release 7.0 with the XO Communication SIP Trunking service, as shown in **Figure 1**.

Interoperability testing of the sample configuration was completed with successful results for all test cases with the exception of the observations/limitations described in **Section 2.2**.
10. Additional References

 https://downloads.avaya.com/css/P8/documents/101005082

 https://downloads.avaya.com/css/P8/documents/101005673

 https://downloads.avaya.com/css/P8/documents/101005862

 https://downloads.avaya.com/css/P8/documents/101005061

[5] *Avaya IP Office Knowledgebase*
 http://marketingtools.avaya.com/knowledgebase

 https://downloads.avaya.com/css/P8/documents/100178732

 https://downloads.avaya.com/css/P8/documents/101013756

 https://downloads.avaya.com/css/P8/documents/101014037

Product documentation for Avaya products may be found at http://support.avaya.com.
Product documentation for XO Communications SIP Trunking is available from XO Communications.
©2016 Avaya Inc. All Rights Reserved.
Avaya and the Avaya Logo are trademarks of Avaya Inc. All trademarks identified by ® and ™ are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners. The information provided in these Application Notes is subject to change without notice. The configurations, technical data, and recommendations provided in these Application Notes are believed to be accurate and dependable, but are presented without express or implied warranty. Users are responsible for their application of any products specified in these Application Notes.

Please e-mail any questions or comments pertaining to these Application Notes along with the full title name and filename, located in the lower right corner, directly to the Avaya DevConnect Program at devconnect@avaya.com.