Contents

1 REFERENCES AND VERSIONS 5

2 PURPOSE 6

3 COMPLETING SIP TRUNK TASK ON SBC2000 7

3.1 Prerequisites 7

3.2 Initial Task configuration 7

3.3 Root Certificate 8

3.4 SBC2000 Certificate 9

3.5 SIP Signaling Endpoints 11

4 CONFIGURING PUBLIC ETHERNET PORT AND IP ADDRESSING 12

4.1 Configuring the Public Ethernet Port 12

4.2 Selecting Unused Ethernet Port 13

4.3 Configuring the IP Default Route 15

4.4 Configure Internal Private IP Static Route 16

5 LYNC SERVER 2013 CONFIGURATION 18

5.1 Adding SBC2000 SBC to Lync Server Topology 18

5.2 Adding the SBC2000 into Lync Server Routing 20

5.3 Configuring Assigned DIDs to Lync Users 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4 Creating Analog Contacts with XO SIP Trunk DIDs</td>
<td>24</td>
</tr>
<tr>
<td>6 SBC2000 TELEPHONY ROUTING PROCESS</td>
<td>25</td>
</tr>
<tr>
<td>6.1 Signaling Groups</td>
<td>25</td>
</tr>
<tr>
<td>6.2 Call Routing Table</td>
<td>26</td>
</tr>
<tr>
<td>6.3 Transformation Tables</td>
<td>27</td>
</tr>
<tr>
<td>7 MEDIA CONFIGURATION</td>
<td>29</td>
</tr>
<tr>
<td>8 ENABLING MEDIA TRANSCODING</td>
<td>31</td>
</tr>
<tr>
<td>9 CALL FORWARD/TRANSFER SUPPORT WITH SIP HISTORY-INFO HEADER</td>
<td>32</td>
</tr>
<tr>
<td>9.1 Creating the SMM Rule</td>
<td>33</td>
</tr>
<tr>
<td>9.2 Apply SMM Rule to Lync Signaling Group Inbound Side</td>
<td>35</td>
</tr>
<tr>
<td>9.3 Add Diversion Support in Transformation Table</td>
<td>35</td>
</tr>
<tr>
<td>10 ANALOG SUPPORT</td>
<td>35</td>
</tr>
<tr>
<td>10.1 Analog Configuration</td>
<td>35</td>
</tr>
<tr>
<td>10.1.1 SIP Server Table</td>
<td>36</td>
</tr>
<tr>
<td>10.1.2 Analog Translation Table</td>
<td>37</td>
</tr>
<tr>
<td>10.1.3 Signaling Group</td>
<td>39</td>
</tr>
<tr>
<td>10.1.4 Modify Lync Server 2013 Routing Table to Add ATA Route</td>
<td>41</td>
</tr>
<tr>
<td>10.1.5 Add Translation Table for ATA</td>
<td>43</td>
</tr>
<tr>
<td>10.1.6 Add Route Table for ATA</td>
<td>44</td>
</tr>
<tr>
<td>11 TROUBLESHOOTING</td>
<td>46</td>
</tr>
<tr>
<td>11.1 Visual Analysis</td>
<td>46</td>
</tr>
<tr>
<td>11.1.1 Current SG Status and Call Activity</td>
<td>46</td>
</tr>
<tr>
<td>11.1.2 Current Alarms</td>
<td>47</td>
</tr>
<tr>
<td>11.2 Viewing Debug Logs</td>
<td>47</td>
</tr>
<tr>
<td>11.3 Sending Debug Logs to a Syslog Collector</td>
<td>47</td>
</tr>
</tbody>
</table>

Figure 1 Typical Lync Server 2013 to XO SIP Trunk Deployment
Figure 2 Initial Task Configuration
1 References and Versions

The following references will provide additional information on Sonus’s Unified Communications Products

Net Product Documentation Hub:
https://support.net.com/display/ALLDOC/Sonus+Product+Documentation;jsessionid=BA930EB97FD04F91A5C84BA74B9DAE35

SBC2000 Specific: https://support.net.com/display/UXDOC/Home

Tenor Quickstart Guide:
https://support.net.com/download/attachments/3407913/TenorAFQuickStart.pdf?version=3&modificationDate=1303316655000

Tested Versions:

SBC2000: 2.2.1v205

Lync Server 2013: 4.0.7577.0
2 Purpose

This guide is for configuring the necessary options for interconnecting Sonus’s SBC2000 SBC between XO’s SIP Trunk offerings and Microsoft’s Lync Server 2013 over the public internet. The SBC2000 provides a secure method of isolating the internal corporate data network from the publicly reachable SIP Trunk offerings. The SBC2000 is located between the Public Internet and the internal WAN/LAN network as shown below:

![Diagram of typical Lync Server 2013 to XO SIP Trunk Deployment]

Figure 1 Typical Lync Server 2013 to XO SIP Trunk Deployment
3 Completing SIP Trunk Task on SBC2000

Configuring the SBC2000 is done through the SBC2000s integrated web server. This guide assumes that the operator has already done the initial configuration positioning the SBC2000 on the IP network. To start the configuration process use a standard web browser to connect to the IP or FQDN address of the SBC2000. Supply the username and password to complete the login process.

3.1 Prerequisites

The following will be required to complete the configuration of the SBC2000 SIP Trunk Task:

a. Access to the Certificate Authority to download the root certificate and sign and download the user certificate for the proper TLS operation between the SBC2000 and the Lync 2013 Server(s)

b. FQDN of the Lync 2013 Mediation Server or Server pool

c. IP Address(s) of the XO Communications SIP Signalling destination server

d. FQDN of the SBC2000

3.2 Initial Task configuration

The Initial Task configuration is a step by step process that will complete the steps to position the SBC2000 between XO’s SIP Trunk and Microsoft’s Lync Server 2013. This task will install the necessary TLS Certificates and create SIP components and call routing basics.
3.3 Root Certificate

Using the web browser navigate to the Task tab and click on the ‘Microsoft UC Setup/Lync 2013 Setup’ link on the left pane. This will start the task to setup the SBC2000 to be configured between the XO SIP Trunk and the Lync Server 2013 components.

The page that loads will have 4 sub tabs located in the right configuration pane. Click on the ‘Trusted CAs’ tab and then the left box with the red up arrow icon. This will prompt for the import of the Root Certificate. There are 2 options for the import type, DER and PEM. DER is used to import a binary type format certificate and will open a file explorer to import the certificate. The PEM type is used to import an ASCII type format. To use the PEM type, first open the certificate file with a text editor such as Microsoft Notepad and then copy and paste into the text box as shown:

![Figure 2 Initial Task Configuration](image-url)
3.4 SBC2000 Certificate

Click on the ‘Generate CSR’ tab. Complete the dialog below with the minimum of the FQDN of the SBC2000 in the ‘Common Name’ field. Once the dialog is populated click ‘OK’. This will create the unsigned certificate that will have to be submitted to the Certificate Authority to be signed. This submission process varies per installation and is out of the scope of this document.
Once the certificate is signed from the Certificate Authority click on the ‘UX Certificate’ tab. Click on the green ‘+’ sign. This will load a dialog similar to the Root Certificate import process. Select either the DER or PEM format in the dropdown to match the file format of the UX Certificate to complete the process. Shown below is the PEM format import process:
3.5 SIP Signaling Endpoints

Click on the last tab ‘Lync 2013 Setup’ to configure the SIP Endpoints in UX. This process will setup the UX to interface to the XO Sip Trunk and to the Lync 2013 Server(s). The task will configure the SIP Server tables and the SIP Signaling groups associated with each entity along with the basic routing between each endpoint:

Scenario Information
Scenario Description: Provide a description that will associate to the setup of the SIP Trunk
Gateway Scenario: Select from the dropdown ‘SIP Trunking’

SIP Properties
No of Channels: Provide the total number of simultaneous calls expected to the SIP Trunking Provider

Lync Server Pool
Server Pool Host: The FQDN of the Server or Server pool that the UX will communicate with
Port Number: The IP Port that the Server or Server pool listens on for SIP messages from the UX

Border Element Servers
Border Element Server: IP or FQDN Address of the XO server that the UX will communicate with
Port Number: The IP Port that the UX server listens on for SIP messages from the UX
Use Secondary Border Element Server: Select from the dropdown if a second server will be configured
Secondary Border Element Server: IP or FQDN Address of the secondary XO server that the UX will communicate with
Port Number: The IP Port that the secondary XO server listens on for SIP messages from the UX
Once the page has been configured click ‘Apply’ to finish the dialog.

![Figure 6 Setting Up SIP Signalling Endpoints](image)

4 Configuring Public Ethernet Port and IP Addressing

The SBC2000 SBC mediates between a company’s internal IP network for SIP signalling and SIP media and the external public IP network to the XO SIP signalling and media servers. The internal IP addressing is setup during the initial installation of the SBC2000 SBC and is outside the scope of this Configuration Guide.

4.1 Configuring the Public Ethernet Port

There are 5 Ethernet ports on the front of the SBC2000 SBC. The far left (Admin) is reserved for administrative use during the initial configuration. The 4 other ports can be used for normal SIP signalling and media. Port 1 will be configured during the initial setup of the SBC2000 SBC and will normally be used for the company’s internal IP network.
Perquisites:

a. Select unused Ethernet Port
b. Public IP Address for SBC2000 SBC
c. Public IP Subnet Mask for SBC2000 SBC
d. Public IP Default Route for SBC2000 SBC
e. Private IP Static Route if Needed

4.2 Selecting Unused Ethernet Port

From the Settings Tab/Node Interfaces/Ports display select an Ethernet that is not currently used. These are shown below:

In Figure 7 Ethernet port 4 will be used for the Public IP connection. Click the Right Arrow next to Lan4 to open the Configuration Dialog. Supply the following information:
Port Alias: Name for the Ethernet Port
Description: Provide a description of the Ethernet Port
Configured Speed: Leave this at ‘Auto’ unless the Ethernet port will be connected to a device that
can not automatically negotiate the highest speed
Configured Duplexity: Leave this at ‘Auto’ unless the Ethernet port will be connected to a device
that can not automatically negotiate the port duplex settings
Networking Mode: Select ‘Routed’ from the drop down
Primary Address: Supply the IP Address assigned to the SBC2000 SBC
Primary Netmask: Supply the Netmask associated with the IP Address of the SBC2000 SBC
Configure Secondary Address: Ensure this is set to ‘No’

Click ‘Apply’ to complete the configuration dialog.

Figure 8 Ethernet Port Configuration
4.3 Configuring the IP Default Route

The IP Default route is required so that the SBC2000 SBC will know where to send IP packets into the public IP network. From the Settings/Protocols/IP/Static Routes click on the green ‘+’ sign to add the route. This will open the dialog for the IP Route. Complete the dialog with the following information:

Figure 9 IP Default Route

- Destination IP: Enter ‘0.0.0.0’
- Mask: Enter ‘0.0.0.0’
- Gateway: Enter the IP Address of the IP Default Router
- Metric: Enter ‘1’

Once configured click ‘OK’ to apply the configuration.
4.4 Configure Internal Private IP Static Route

Internal IP Static Routes may be required if the SBC2000 SBC needs to communicate with multiple internal private IP addresses. These static routes have to be deterministic because there can be only one default route and this is used on the public side. If there are multiple internal networks then multiple static routes will be required. The examples below show static routes for a private 10.0.0.0 network and a private 192.168.0.0 network:
Figure 11 Internal Static IP Route 1

Figure 12 Internal Static Route 2
5 Lync Server 2013 Configuration

Lync Server 2013 will need to be configured to support the SBC2000 SBC in order to communicate with the XO SIP Trunk. This section covers the addition of the SBC2000 into the Lync Server topology and adding the SBC2000 to the Lync Server 2013 routing. XO SIP Trunk DIDs will be assigned to a Lync user’s account and the commands will be shown how to add an analog contact with a XO SIP Trunk DID.

This section assumes that the Lync Server components have been installed along with Lync users. The user should be familiar with Lync Server Topology Builder, Lync Server Control Panel and Lync Server management Shell. This section does not cover the basic installation of Lync Server 2013.

5.1 Adding SBC2000 SBC to Lync Server Topology

The Lync Server topology needs to be modified by adding the SBC2000 SBC as a Gateway device. The Gateway device will be the interface to the XO SIP Trunk.

Open Lync Server Topology builder and load the current topology. Expand the topology and click on the ‘Lync Server 2013’ link in the left hand pane. Expand the ‘Shared Components’ link, right click on the ‘PSTN Gateways’ and select ‘New IP/PSTN Gateway...’ from the drop down. This will provide the link in the right hand pane ‘New IP/PSTN Gateway’. Click on this to open the dialog below:

![Figure 13 Adding New IP/PSTN Gateway in Lync Server 2013 Topology](image)

Figure 13 Adding New IP/PSTN Gateway in Lync Server 2013 Topology
Figure 14 Defining PSTN Gateway FQDN
Populate the SBC FQDN and click ‘Next’

Figure 15 Define the IP address
Ensure the ‘Enable IPv4’ and ‘Use all configured IP addresses’ radio buttons are selected and click ‘Next’
All of these settings can be left default unless the port needs to change because it is in use on another device. Leave TLS and ensure the proper Associated Mediation Server is selected and click ‘Finish’.

Publish the topology to complete the task.

5.2 Adding the SBC2000 into Lync Server Routing

In order for Lync Server 2013 to send calls to the XO SIP Trunk the SBC2000 SBC will have to be added to the Routing. Open Lync Server Control Panel and click on the Voice Routing link on the left hand pane. Click on the Route tab on top of the right hand pane to show the dialog below:
Figure 17 Lync Server Control Panel Route Selection

Click on the ‘Add’ button next to ‘Associated gateways’ table. This will bring up a list of available gateways and select the FQDN for the SBC2000 as shown below:
Figure 17 Available PSTN Trunks

Ensure the SBC2000 SBC is highlighted in the dialog and click ‘OK’.

Scroll down to the ‘Associated PSTN Usages’. Click on the ‘Select’ button to bring up the list of available PSTN Usages. Select the proper PSTN Usages from the list and click ‘OK’.

With the PSTN Gateway selected and the PSTN Usages selected the dialog should be similar to below:
At this point commit these changes to the topology.

5.3 Configuring Assigned DIDs to Lync Users

In order for Lync users to be called directly from the PSTN, the Lync users will have to have the XO SIP Trunk DID numbers assigned. This is done in the User section of Lync Server Control Panel.

Open the specific Lync user in Lync Server Control panel that will have a DID assigned to it. Configure the DID in the Line URI configuration as shown below:
5.4 Creating Analog Contacts with XO SIP Trunk DIDs

In order for analog devices to be called directly from the PSTN, the analog devices will have to have the proper XO SIP Trunk DID assigned to it.

This section does not go into details on configuring analog devices. Please see the Lync Server 2013 documentation for further details.

Open Lync Server Management Shell. Below is an example of how to create an analog contact as a fax machine and a XO SIP Trunk DID number of 14255554321:
6 SBC2000 Telephony Routing Process

The telephone routing process in the SBC2000 moves calls received on one Signaling Group (SG) to an outbound SG. While the call is moving the number or name may be translated and additional lookups can be done to ensure the call is routed properly.

6.1 Signaling Groups

The SG is the first place an incoming call will reach the SBC2000. The Signaling group will direct the call to the Routing Table as shown below:
6.2 Call Routing Table

The Call Routing Table will send the Called and Calling Party information elements to a Transformation Table so that they can be modified if required to match the destination systems format. Once the transformations have been completed the Route Table will then route the call to the applicable SG for the destination system.
6.3 Transformation Tables

Transformation tables are used to modify the called and calling party information elements among other elements that are pertinent to proper call handling between the origination and destination servers. The basic transformations rely on the use of Regular Expressions as the numbers/names are changed from what is received to what is sent to the destination. Transformation tables must have a matching entry format in order for the call to be routed to that route. If there are no matching Transformation table entries the call will be returned back to the Routing table so the next Route entry can be tried for a match. This will happen as long as there are Routes in the Route table to try. If all Routes have been tried with no matches in the Transformation table(s) the call will fail.

![Transformation Tables](image)

Figure 24 Transformation Tables

Most transformation table entries for a SIP Trunking application will be used for matching Lync Server 2013 requirement for called and calling numbers to be in E.164 format. Below are examples to match XO number format to Lync Server 2013 number format.

This example is used to transform a called number from Lync 2013 Server in E.164 format to a US 10 digit number for routing into the XO SIP Trunk:

Input Field
- **Type:** Called Address/Number – Used to capture the numeric portion of the Dialed Number
- **Value:** `^\+1\(\d{10}\)$` - Regular Expression that looks for the +1 at the start of the Dialed Number and then captures the 10 digits that follows between the open and close parenthesis

Output Field
- **Type:** Called Address Number – Identifies the Information Element that the Input Field Type should be translated to
- **Value:** `\1` – Identifies the open and close parenthesis that should be carried over from the Input Value Field
This example is used to modify a called number from the XO SIP Trunk into an E.164 format that Lync 2013 Server will accept:

Input Field
- **Type:** Called Address/Number – Used to capture the numeric portion of the Dialed Number
- **Value:** ^\+(\d{10})$ - Regular Expression that looks for the +1 at the start of the Dialed Number and then captures the 10 digits that follows between the open and close parenthesis

Output Field
- **Type:** Called Address/Number – Identifies the Information Element that the Input Field Type should be translated to
- **Value:** +1\1 – Prepends ‘+1’ and Identifies the open and close parenthesis that should be carried over from the Input Value Field

Figure 25 Transformation Table that Removes + and 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Remove + and 1 From Called Number</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Input Field</th>
<th>Output Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Called Address/Number</td>
</tr>
<tr>
<td>Value</td>
<td>^+(\d{10})$</td>
</tr>
<tr>
<td>Type</td>
<td>Called Address/Number</td>
</tr>
<tr>
<td>Value</td>
<td>+1\1</td>
</tr>
</tbody>
</table>

Fork Call: No
The SBC2000 initial configuration task from Section 1 of this guide will setup the required media settings for both the Lync 2013 Server and the XO SIP Trunk. Media lists will be created and applied to the appropriate SGs. Below are examples of a typical Media configuration:

Figure 27 Media Profiles Showing Enabled Codecs
Figure 28 Typical G711ulaw Codec Settings

Figure 29 Media List Containing G711ulaw and G729
8 Enabling Media Transcoding

Media Transcoding can be used for changing both codec and DTMF digit transfer methods. Since Lync 2013 Server does not support both G.729 and inband DTMF digit transfer methods the SBC2000 can be
configured to transcode one list to another list between the XO SIP Trunk and Lync 2013 Server. In order for this to work properly there has to be a Media List for the XO SIP Trunk with G.729 and/or Inband DMF digit transfer settings and another Media List with G711 (A or U law as required) with RFC2833 digit transfer.

The actual Transcoding configuration setting is done at the Route Table. The example below is for a call originating on the Lync 2013 Server using G711 and the matching Route table entry for XO has Transcoding enabled and calls out the Media list that is used for the XO SIP Trunk:

Figure 32 Media Transcoding Configuration

9 Call Forward/Transfer Support with SIP History-Info Header
Lync Server 2013 sends SIP History-Info headers on call flows where the From header may not contain an XO subscriber number. This is required so that XO can verify the call is a valid XO number.

The SBC2000 uses SIP Message Manipulation to convert the SIP History-Info elements into a SIP Diversion header to XO.
9.1 Creating the SMM Rule

Under Settings>>SIP>>Message Manipulation>>Message Rule Tables add a new table similar to below:

Figure 33 SMM Table

Populate the table as follows:
This will create a regular expression that looks for the History-Info header and then the first number in the header. I included the domain of the Lync Server that originates the Invite, in this example I used a partial 'W15FE1'. This will be different in all installations and it will have to be obtained from actual call flows.

Replace Regex: Diversion: <sip:\1@10.243.1.251>

This will replace the History-Info header with a Diversion header. It will populate the URI with the first number format found in the History-Info header. This example removes the +1 from the number format. This will have to match the carrier requirements for number formats. The domain portion will have to match the installation.
9.2 Apply SMM Rule to Lync Signaling Group Inbound Side

![Figure 35 SMM Rule Applied to SG](image)

9.3 Add Diversion Support in Transformation Table

In the Transformation table add an optional blank Redirecting Number on both the Input Field and Output Field. This will match invites that do not have a Diversion header from the Lync 2013 Server. And then add a second optional Redirection Number with a collect all '\(.*\)' on the Input Field and send this out on the Output Field '\\1'. This will send the Diversion when Lync 2013 Server sends a History-Info header that is converted to a Diversion.

![Figure 36 Adding Diversion Handling in Transformation Table](image)

10 Analog Support

Lync Server 2013 supports analog devices such as phones and fax machines in its topology. The devices can be configured with DID numbers so that they can be dialed directly from the PSTN. The analog devices are configured to home to a configured SBC or gateway in the Lync Server 2013 topology. This means that the configuration on the homed device needs to be able to route calls to the analog devices from Lync Server 2013 while also routing calls to the SIP Trunk.

10.1 Analog Configuration

To support Analog devices additional configuration will be required. For each ATA an additional SIP Server table and Signaling Group and Route table will be needed. The routing will be to send all calls from the
Analog devices to the Lync Server 2013. Also since the SBC2000 does not currently support Analog connections a separate ATA will be required.

10.1.1 SIP Server Table

The SIP Server table for the ATA is configured so that the SBC2000 will know where to send analog calls to. The SIP Server table is configured under Settings/SIP/SIP Server Tables. Click on the green ‘+’ to add the name of the ATA. In the example below an ATA with the name of ‘Tenor 206’ has been added:

Figure 37 ATA SIP Server Table Name

Once the SIP Server Table Name has been created for the ATA, click on the name in the list on the left pane. From here click the right facing arrow (right arrow will turn down as dialog opens) next to the SIP Server name in the right hand pane to open the configuration dialog as shown below:
Figure 38 SIP Server Configuration Dialog

Provide the following information to complete the dialog:

- **Priority**: Leave default
- **Host**: FQDN or IP Address of ATA
- **Port**: SIP Signaling Listen Port of the ATA

Protocol: IP Protocol that will be used to reach the ATA

The rest of the settings can stay default for a basic install.

10.1.2 Analog Translation Table

Add a Translation table that will be used to route to an ATA with Settings/Translation Table. The example below is adding a Translation table entry for a DID number assigned to the Tenor 206 ATA:
Click on the entry in the Translation table listing and then on the green ‘+’ sign in the right hand pane to open the configuration dialog for this DID entry:

Enter the following information in the dialog:

- **Description**: Enter a description so this will be recognized as the ATA route
 - **Input Field**
 - **Type**: Select ‘Called Address/Name’ from the dropdown
 - **Value**: Enter the number to route to this ATA as
 \+(14255551234)$

- **Output Field**
 - **Type**: Select ‘Called Address/Name’ from the dropdown
 - **Value**: Enter \1 to route the contents of the Input Field

When the dialog is populated it should look similar to below:
10.1.3 Signaling Group

The Signaling Group for the ATA is configured at Settings/Signaling Groups. Click on the ‘Add SIP SG’ link in the top of the right hand pane to add the name of the SIP SG. The example bellows shows a SG with the name of ‘Tenor 206’ with the basic configuration changes made from the default dialog:
Figure 41 SIP SG Configuration Dialog

Description: Tenor 206
No. of Channels: This is related to the number of calls the ATA can support
SIP Server Table: Select from the dropdown the name of the SIP Server table configured in the previous step
Listen Ports: The port(s) that the SG will listen to for SIP Signaling from the ATA
Federated IP/FQDN: The IP Address of the ATA or Network Address of the ATA IP Network. This is used to ensure the SG listens only to the originating ATA for SIP signalling

Click 'OK' to complete the dialog.
10.1.4 Modify Lync Server 2013 Routing Table to Add ATA Route

With the SIP Server, Transformation Table and SG configured, the Routing table that routes calls from Lync Server 2013 needs to be modified so that the calls for the ATA will be routed properly. This is done by adding the ATA routes into the table.

Open the Lync Server 2013 Routing table by clicking on Settings/Call Routing Table. Click on the Call Routing table for calls coming from Lync Server 2013, in this configuration it is the ‘Lync Server 2013 Routing’ entry. Once the table is opened click on the green ‘+’ sign to add the route to the table. Configure the following to complete the dialog:

- **Description**: Add a description to associate with this route
- **Number/Name Translation Table**: Select the proper Translation Table from the dropdown, in this case select the Translation configured above
- **Destination Signaling Group**: Click ‘Add’ and then select the SG for the ATA

The completed dialog is shown below:
Click ‘OK’ to complete the dialog and then click ‘Resequence’ at the top of the Route Table entries. In the dialog that opens click on the route for the ATA and then click ‘Up’ to move this route to the top of the table. This will ensure that the Route table will analyse the routes for the ATA first before the call is routed to the XO SIP Trunk:
10.1.5 Add Translation Table for ATA

All Calls from the ATA will have to be routed to Lync Server 2013. A Translation table may be required to match the default number format on the Lync Server 2013 (E.164). The Translation table below is used to add a ‘+’ to the called number from the ATA:

![Translation Table to Add + to Called Number](Figure 44)
10.1.6 Add Route Table for ATA

In order for calls to route from the ATA to Lync Server 2013 an ATA Route table needs to be added. This will allow the selection of the proper Translation table and route from the SBC2000 to Lync Server 2013.

Click on Settings/Call Routing Table and then on the green ‘+’ sign in the right hand pane. Enter a name for the route table dialog as shown below:

![Figure 45 Creating a Route Table for the ATA](image)

Click ‘OK’ to complete the dialog.

Once Route Table is added, complete the configuration dialog with the following information:

- **Description**: Enter description to associate with the route
- **Number/Name Translation Table**: Select the Translation Table from above
- **Destination Signaling Group**: Click ‘Add’ and select the SG for the Lync Server 2013 Server

The completed dialog is shown below:
Figure 46 Routing Entry for Calls From ATA to Lync Server 2013

Click ‘OK’ to complete the dialog.
11 Troubleshooting
The SBC2000 provides various ways to troubleshoot call issues. The first is through visual analysis of configured systems and active and certain archived alarms through the Monitor page. And the SBC2000 can generate debug logs to be viewed locally, downloaded to a text editor or the debug logs can be sent to a Syslog collector.

11.1 Visual Analysis
Clicking on the ‘Monitor’ tab will bring up a real time view of the current status of the configured SGs and also a real time view of call status. Also, the current alarms will be shown in the ‘Alarm Window’ at the bottom of the screen and the highest unacknowledged alarm color will show in the ‘Monitor’ tab.

11.1.1 Current SG Status and Call Activity
The top portion of the ‘Monitor’ display will show the current status of the SGs and their associated channels. If a SG is down the SG will be colored Red as shown below for the XO SG:

![Figure 47 XO SIP Trunk Down](image)

There are many reasons a SG may be down. The far end equipment may be off line, there could be a routing issue or there could be a configuration problem. The visual Monitor will provide a quick view on where to start trouble shooting.
11.1.2 Current Alarms
The current alarms will also indicate problems. The alarms shown below posted as the XO SG went out of service:

![Figure 48 Alarm Status](image)

11.2 Viewing Debug Logs
The SBC2000 will continually record the last hour and 15 minutes of debug logs. These are split into 15 minute logs and can be viewed by clicking on the ‘Logs’ tab as shown below:

![Figure 49 Debug Logs](image)

The logs are ordered with the current log being written on top. When the current log reaches the end of the recording period it will be rotated down from the top and a new log will start to write.

To view one of these logs click the blue box to the left of the file name. This will open a web based text box that can be scrolled through to find certain debug information.

To download the log to either save or open in a text editor, click on the ‘Download’ link to the right of the file information. This will open a dialog to either save to a file or open.

11.3 Sending Debug Logs to a Syslog Collector
To send debug information to a Syslog server, click ‘Settings/Logging Configuration/Remote Log Servers’. Click on the green ‘+’ sign to add a Syslog collector. Complete the dialog with the following information:

Global Log Level: Set to the level required
Log Destination: Enter the FQDN or IP Address of the Syslog Collector
Click ‘OK’ to complete the dialog. This will start sending the debug log information to the Syslog collector. Different levels of collection may be required to show applicable troubleshooting information.

Figure 50 Syslog Collector Configuration