Application Notes for Configuring XO Communications with the Avaya Communication Server 1000 Release 7.5, Avaya Aura® Session Manager Release 6.2 and Avaya Session Border Controller for Enterprise Release 4.0.5 – Issue 1.0

Abstract

These Application Notes illustrate a sample configuration using Avaya Communication Server 1000 Release 7.5, Avaya Aura® Session Manager Release 6.2, Avaya Session Border Controller for Enterprise (Avaya SBCE) Release 4.0.5 with the XO Communications system.

The XO Communications offer referenced within these Application Notes is designed for business customers with an Avaya SIP trunk solution. The service provides local and/or long distance PSTN calling via standards-based SIP trunks directly, without the need for additional TDM enterprise gateways or TDM cards and the associated maintenance costs.

Information in these Application Notes has been obtained through DevConnect compliance testing and additional technical discussions. Testing was conducted via the DevConnect Program at the Avaya Solution and Interoperability Test Lab.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>General Test Approach and Test Results</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Interoperability Compliance Testing</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Test Results</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Support</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>Reference Configuration</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>Equipment and Software Validated</td>
<td>8</td>
</tr>
<tr>
<td>5.</td>
<td>Configure Avaya Communication Server 1000</td>
<td>8</td>
</tr>
<tr>
<td>5.1</td>
<td>Log in to Communication Server 1000 System</td>
<td>9</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Log in to Unified Communications Management (UCM) and Element Manager (EM)</td>
<td>9</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Log in to Call Server by using the Overlay Command Line Interface (CLI)</td>
<td>10</td>
</tr>
<tr>
<td>5.2</td>
<td>Administer an IP Telephony Node</td>
<td>11</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Obtain Node IP address</td>
<td>11</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Administer Terminal Proxy Server (TPS)</td>
<td>13</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Administer Quality of Service (QoS)</td>
<td>13</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Synchronize New Configuration</td>
<td>14</td>
</tr>
<tr>
<td>5.3</td>
<td>Administer Voice Codec</td>
<td>14</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Enable Voice Codec G.729, G.711</td>
<td>14</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Enable Voice Codec on Media Gateways</td>
<td>14</td>
</tr>
<tr>
<td>5.4</td>
<td>Zones and Bandwidth Management</td>
<td>16</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Create a Zone for IP Phones (Zone 10)</td>
<td>16</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Create a Zone for Virtual SIP Trunk (Zone 255)</td>
<td>17</td>
</tr>
<tr>
<td>5.5</td>
<td>Administer SIP Trunk Gateway</td>
<td>18</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Integrated Services Digital Network (ISDN)</td>
<td>18</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Administer SIP Trunk Gateway to Avaya Aura® Session Manager</td>
<td>19</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Administer Virtual D-Channel</td>
<td>21</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Administer Virtual Super-Loop</td>
<td>24</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Administer Virtual SIP Routes</td>
<td>25</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Administer Virtual Trunks</td>
<td>28</td>
</tr>
<tr>
<td>5.5.7</td>
<td>Administer Calling Line Identification Entries</td>
<td>31</td>
</tr>
<tr>
<td>5.5.8</td>
<td>Enable External Trunk to Trunk Transfer</td>
<td>33</td>
</tr>
<tr>
<td>5.6</td>
<td>Administer Dialing Plans</td>
<td>34</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Define ESN Access Codes and Parameters (ESN)</td>
<td>34</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Associate NPA and SPN call to ESN Access Code 1</td>
<td>36</td>
</tr>
</tbody>
</table>
5.6.3. Digit Manipulation Block (DMI) ... 37
5.6.4. Digit Manipulation Block Index (DMI) for Outbound Call 37
5.6.5. Route List Block (RLB) (RLB 14) .. 38
5.6.6. Inbound Call – Incoming Digit Translation Configuration 39
5.6.7. Outbound Call - Special Number Configuration 41
5.6.8. Outbound Call - Numbering Plan Area (NPA) 42
5.7. Administer Phone ... 43
 5.7.1. Phone creation ... 43
 5.7.2. Enable Privacy for Phone .. 45
 5.7.3. Enable Call Forward for Phone .. 46
 5.7.4. Enable Call Waiting for Phone .. 48
6. Configure Avaya Aura® Session Manager ... 49
 6.1. Avaya Aura® System Manager Login and Navigation 50
 6.2. Specify SIP Domain ... 52
 6.3. Configure Adaptations .. 53
 6.4. Add Location ... 53
 6.5. Add SIP Entities .. 55
 6.5.1. Configure Session Manager SIP Entity 56
 6.5.2. Configure Communication Server 1000 SIP Entity 57
 6.5.3. Configure SBCE SIP Entity ... 57
 6.6. Add Entity Links .. 58
 6.7. Configure Time Ranges .. 60
 6.8. Add Routing Policies .. 60
 6.9. Add Dial Patterns .. 62
7. Configure Session Border Controller for Enterprise 65
 7.1. Log in SBCE .. 66
 7.2. Global Profiles .. 66
 7.2.1. Configure Server Interworking - Avaya site 67
 7.2.2. Configure Server Interworking – XO Communications site 67
 7.2.3. Configure URI Groups ... 68
 7.2.4. Configure Routing – Avaya Site ... 69
 7.2.5. Configure Routing – XO Communications Site 70
 7.2.6. Configure Server – Session Manager .. 70
 7.2.7. Configure Server – XO Communications 71
 7.2.8. Configure Topology Hiding – Avaya Site 72
 7.2.9. Configure Topology Hiding – XO Communications Site 73
 7.3. Domain Policies ... 74
7.3.1. Create Application Rules ... 74
7.3.2. Create Border Rules .. 75
7.3.3. Create Media Rules .. 76
7.3.4. Create Security Rules .. 77
7.3.5. Create Signaling Rules ... 78
7.3.6. Create Time of Day Rules ... 79
7.3.7. Create Endpoint Policy Groups ... 80
7.4. Device Specific Settings .. 82
7.4.1. Manage Network Settings ... 82
7.4.2. Create Media Interfaces ... 83
7.4.3. Create Signaling Interfaces .. 84
7.4.4. Configuration Server Flows ... 84
8. XO Communications SIP Trunking Configuration 85
9. Verification Steps ... 86
 9.1. General ... 86
 9.2. Verification of an Active Call on Call Server 86
 9.3. Protocol Trace ... 87
10. Conclusion ... 88
11. Additional References .. 88
1. Introduction

These Application Notes illustrate a sample configuration using Avaya Communication Server 1000 (CS1000) Release 7.5, Avaya Aura® Session Manager Release 6.2, Avaya Session Border Controller for Enterprise (Avaya SBCE) Release 4.0.5 with the XO Communications system. The XO Communications Service provides local and/or long-distance calls (with PSTN endpoints) via standards-based SIP trunks.

2. General Test Approach and Test Results

The Communication Server 1000 connects to the Avaya SBCE via Session Manager using a SIP trunk connection. Then the Avaya SBCE connects to the XO Communications system using SIP trunk. Various call types were made from Communication Server 1000 to and from the XO Communications system to verify the interoperability.

DevConnect Compliance Testing is conducted jointly by Avaya and DevConnect members. The jointly-defined test plan focuses on exercising APIs and/or standards-based interfaces pertinent to the interoperability of the tested products and their functionalities. DevConnect Compliance Testing is not intended to substitute full product performance or feature testing performed by DevConnect members, nor is it to be construed as an endorsement by Avaya of the suitability or completeness of a DevConnect member’s solution.

2.1. Interoperability Compliance Testing

Compliance testing scenarios for the configuration described in these Application Notes included the following:

- General call processing between Communication Server 1000 and XO Communications systems including:
 - Codec/ptime (G.729/20ms, G.711 u-law/20ms)
 - Hold/Resume on both ends
 - CLID displayed
 - Ring-back tone
 - Speech path
 - Dialing plan support
 - Advanced features (Call on Mute, Call Park, Call Waiting)
 - Abandoned Call
- Call redirection verification: all supported methods (blind transfer, consultative transfer, call forward, and conference) including CLID. Call redirection is performed from both ends
- Fax with G.711 Pass Through, T.38 (G.711 as fall back)
- DTMF in both directions
- SIP Transport UDP
- Thru dialing via the Communication Server 1000 Call Pilot
- Voice Mail Server Call Pilot (hosted on Avaya system)
The following assumptions were made for these compliance tested configuration:

1. Communication Server 1000 R7.5 software with latest patches
2. XO Communications provides support to setup, configure and troubleshoot on carrier switch during testing execution.

During testing, the following activities were made to each test scenario:

1. Calls were checked for the correct call progress tones and cadences.
2. During the ringing state the ring back tone and destination ringing were checked.
3. Calls were checked in both hands-free and handset mode due to internal Avaya requirement.
4. Calls were checked for speech path in both directions using spoken words to ensure clarity of speech.
5. The display(s) of the sets/clients involved were checked for consistent and expected CLID and redirection information both prior to answer and after call establishment.
6. The speech path and messaging system were observed for timely and quality End to End tone audio path generation and application responses.
7. The call server maintenance terminal window was open during the test cases execution for the monitoring of BUG(s), ERROR and AUD messages.
8. Speech path was checked before and after calls were put on/off hold from each end.
9. Applicable files were screened on an hourly basis during the testing for message that may indicate technical issues. This refers to Communication Server files.
10. Calls were checked to ensure that all resources such as Virtual trunks, TDM trunks, Sets and VGWs are released when a call scenario ends.

2.2. Test Results

The objectives outlined in Section 2.1 were verified. All the applicable test cases were executed. However, the following observations were noted during the compliance testing:

1. If the Communication Server 1000 phone holds/resumes an outbound call, the dialed digits are no longer displayed. This is a Communication Server 1000 known issue.
2. Calling from PSTN to CS1000, XO Communications does not block caller ID and name. XO Communications only relays that information. It depends on the PSTN behavior.

It was agreed with XO Communications that the above observations were not severe enough to fail the testing.

2.3. Support

For technical support on the Avaya products described in these Application Notes visit: http://support.avaya.com
Toll free number: 1-800-242-2121

For technical support on XO Communications system, please visit at:

http://www.xo.com/care/Pages/overview.aspx
Toll Free number: 1.800.421.3872
3. Reference Configuration

Figure 1 illustrates the test configuration used during the compliance test between Communication Server 1000 and XO Communications systems. For confidentiality and privacy purposes, actual public IP addresses used in this testing have been masked out and replaced with fictitious IP addresses throughout the document.
4. Equipment and Software Validated

The following equipment and software were used for the sample configuration provided:

Avaya systems:

<table>
<thead>
<tr>
<th>Equipment/Software</th>
<th>Release/Version</th>
</tr>
</thead>
</table>
| Avaya Communication Server 1000 (CPPM) | Call Server: 750 Q+ GA
| | Signaling Server: 7.50.17 GA
| | SIP Line Server: 7.50.17 GA |
| Avaya S8800 Server | Avaya Aura® Session Manager R6.2.0.0.620103 – 6.2.1.621002 |
| Avaya S8800 Server | Avaya Aura® System Manager R6.2.0 – SP1 – 6.2.0.0.15669 – 6.2.12.105 |
| Avaya Session Border Controller for Enterprise | 4.0.5 Q19 |
| Avaya UNIStim Phones: | |
| 2002 p2 | 0604DCO |
| 1140 | 0625C8Q |
| 1120 | 0624C8Q |
| 2007 | 0621C8L |
| Avaya 3904 Digital Phone | N/A |
| Analog Phone | N/A |
| HP Officejet 4500 Fax | N/A |

XO COMMUNICATIONS systems:

<table>
<thead>
<tr>
<th>System</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadsoft Softswitch</td>
<td>● Rel_18.sp1_1.890</td>
</tr>
<tr>
<td>SONUS GSX9000</td>
<td>● V07.03.01R10</td>
</tr>
</tbody>
</table>

Additional patch lineup for the configuration listed as below:

Call Server: 7.50 Q+ GA plus latest DEPLIST – Deplists_CPL_X21_07_50Q.zip
Signaling Server: 7.50.17 GA plus latest DEPLIST –
Service_Pack_Linux_7.50_17_20120713.ntl

5. Configure Avaya Communication Server 1000

These Application Notes used the Incoming Digit Translation feature to receive the calls and used the Numbering Plan Area Code (NPA), Special Number (SPN) features to route calls from the Communication Server 1000, over the XO Communications SIP trunk to PSTN.
These application notes assume that the basic configuration has already been administered. For further information on Communications Server 1000, please consult the references in Section 11.

The below procedures describe the configuration details of Communication Server 1000 with a SIP trunk to the XO Communications system.
5.1. Log in to Communication Server 1000 System

5.1.1. Log in to Unified Communications Management (UCM) and Element Manager (EM)

Open an instance of a web browser and connect to the UCM GUI at the following address: http://<node IP address> or http://<UCM IP address>. **Log in** using an appropriate **User ID** and **Password**.

![Figure 2 – Login Unified Communications Management](image)

The **Avaya Unified Communications Management** screen is displayed. Click on the **Element Name** of the Communication Server 1000 Element as highlighted in red box as below:

![Figure 3 – Unified Communications Management](image)
The Communication Server 1000 Element Manager **System Overview** page is displayed as shown in **Figure 4**.

IP Address: 10.10.97.96
Type: Communication Server 1000E CPPM Linux
Version: 4121
Release: 7.50 Q+

![AVAYA CS1000 Element Manager](image)

Figure 4 – Element Manager System Overview

5.1.2. Log in to Call Server by using the Overlay Command Line Interface (CLI)

Using Putty, SSH to connect to IP address of CS1000 Signaling Server with the account with administrator credentials.
Run the command `cslogin` and log in with the appropriate user account and password.
Here are the logs.

```
login as: < --- enter the account with administrator credentials

Nortel Networks Linux Base 7.50
The software and data stored on this system are the property of, or licensed to, Nortel Networks and are lawfully available only to authorized users for approved purposes. Unauthorized access to any software or data on this system is strictly prohibited and punishable under appropriate laws. If you are not an authorized user then do not try to login. This system may be monitored for operational purposes at any time.

admin@10.10.97.177's password: <-----enter the password
Last login: Wed Dec 05 12:42:05 2012 from 10.10.98.78
[admin@car3-ssg-carrier ~]$ cslogin
SEC054 A device has connected to, or disconnected from, a pseudo tty without authenticating
>login
```
5.2. Administer an IP Telephony Node
This section describes how to configure an IP Telephony Node on Communication Server 1000.

5.2.1. Obtain Node IP address
These application notes assume that the basic configuration has already been administered and that Node has already been created. This section describes the steps for configuring a Node (Node ID 3000) in Communication Server 1000 IP network to work with XO Communications system. For further information on Communications Server 1000, please consult the references in Section 11.

Select System → IP Network → Nodes: Servers, Media Cards and then click on the Node ID as shown in Figure 5.

![Figure 5 – IP Telephony Nodes](image)

The Node Details screen is displayed in Figure 6 and Figure 7 with the IP address of the Communication Server 1000 node. The Node IPv4 address 10.10.97.178 is a virtual address which corresponds to the TLAN IP address 10.10.97.177 of the Signaling Server, SIP Signaling Gateway. The SIP Signaling Gateway uses this Node IP address to communicate with other components to process SIP calls.
Figure 6 – Node Details 1

Figure 7 – Node Details 2
5.2.2. Administer Terminal Proxy Server (TPS)

Continue from Section 5.2.1. On the Node Details page, select the Terminal Proxy Server (TPS) link as shown in Figure 7. Check the UNIStim Line Terminal Proxy Server checkbox to enable proxy service on this node and then click the Save button as shown in Figure 8.

![Figure 8 – TPS Configuration Details](image)

5.2.3. Administer Quality of Service (QoS)

Continue from Section 5.2.1. On the Node Details page, select the Quality of Service (QoS) link as shown in Figure 7. The default Diffserv values are as shown in Figure 9. Click on the Save button.

![Figure 9 – QoS Configuration Details](image)
5.2.4. Synchronize New Configuration

Continue from Section 5.2.3, return to the Node Details page (Figure 6) and click on the Save button. The Node Saved screen is displayed. Click on Transfer Now (not shown). The Synchronize Configuration Files screen is displayed. Check the Signaling Server checkbox and click on Start Sync (not shown). When the synchronization completes, check the Signaling Server checkbox and click on the Restart Applications (not shown).

5.3. Administer Voice Codec

5.3.1. Enable Voice Codec G.729, G.711

Select IP Network → Nodes: Servers, Media Cards from the left pane, and in the IP Telephony Nodes screen displayed, select the Node ID of the Communication Server 1000 system. The Node Details screen is displayed. (See Section 5.2.1 for more detail). On the Node Details page as shown in Figure 7, click on Voice Gateway (VGW) and Codecs. The XO Communications system supports G.711/time 20ms and G.729/time 20ms with Voice Activity Detection (VAD) checkbox unchecked. Then click on the Save button.

![Figure 10 – Voice Gateway and Codec Configuration Details](image)

Synchronize the new configuration (please refer to Section 5.2.4).

5.3.2. Enable Voice Codec on Media Gateways

From the left menu of the Element Manager page in Figure 10, select IP Network → Media Gateways. The Media Gateways page will appear (not shown). Click on the MGC which is located on the right of the page. In the following screen scroll down to the Codec G.711 and Codec G.729 and uncheck VAD as shown in Figure 11. Scroll down to the bottom of the page and click on the Save button (not shown).
Figure 11 – Media Gateways Configuration Details
5.4. Zones and Bandwidth Management

This section describes the steps to create 2 zones: zone 10 for VGW and IP set, and zone 255 for SIP Trunk.

5.4.1. Create a Zone for IP Phones (Zone 10)

The following figures show how to configure a zone for VGW and IP set for bandwidth management purposes. The bandwidth strategy can be adjusted to preference.

Select IP Network → Zones configuration from the left pane (not shown), click on Bandwidth Zones as shown in Figure 12.

![Figure 12 – Zones Page](image)

The Bandwidth Zones screen is displayed as shown in Figure 13. Click Add to create new zone for IP Phones.

![Figure 13 – Bandwidth Zones](image)
Select and input the values as shown (in red box) in Figure 14 and click on the Submit button.

- **INTRA_BW**: 1000000
- **INTRA_STGY**: Set codec for local calls. Select Best Quality (BQ) to use G.711 as the first priority codec for negotiation.
- **INTER_BW**: 1000000
- **INTER_STGY**: Set codec for the calls over trunk. Select Best Quality (BQ) to use G.711 as the first priority codec for negotiation.
- **Zone Intent ((ZBRN))**: Select MO (MO) for IP phones, and VGW.

![Figure 14 –Bandwidth Management Configuration Details – IP phone](image)

5.4.2. Create a Zone for Virtual SIP Trunk (Zone 255)

Follow Section 5.4.1 to create a zone for the virtual trunk. The difference is in **Zone Intent (ZBRN)** field. Select **VTRK** for virtual trunk as shown in Figure 15 and then click on the Submit button.

![Figure 15 –Bandwidth Management Configuration Details – virtual SIP trunk](image)
5.5. Administer SIP Trunk Gateway
This section describes the steps for establishing a SIP connection between SIP Signaling Gateway to Session Manager.

5.5.1. Integrated Services Digital Network (ISDN)
Select Customers in the left pane (not shown). The Customers screen is displayed. Click on the link associated with the appropriate customer, in this case 00. The system can support more than one customer with different network settings and options. The Customer 00 Edit page will appear (not shown). Select the Feature Packages option from Customer 00 Edit page. The screen is updated with a listing of feature packages populated below Feature Packages (not all features shown in Figure 16 below). Select Integrated Services Digital Network to edit its parameters. The screen is updated with parameters populated below Integrated Services Digital Network. Click on Integrated Services Digital Network, and retain the default values for all remaining fields. Scroll down to the bottom of the screen, and click on the Save button at the bottom of the page (not shown).

![Figure 16 –Customer – ISDN Configuration](image-url)
5.5.2. Administer SIP Trunk Gateway to Avaya Aura® Session Manager

Select IP Network → Nodes: Servers, Media Cards configuration from the left pane. In the IP Telephony Nodes screen displayed, select the Node ID of the Communication Server 1000 system. The Node Details screen is displayed as shown in Figure 7, Section 5.2.1.

On the Node Details screen, select Gateway (SIPGw). Under the General tab of the Virtual Trunk Gateway Configuration Details screen, enter the following values (highlighted in red boxes) for the specified fields, and retain the default values for the remaining fields as shown in Figure 17. The parameters (highlighted in red boxes) are filled in. The SIP domain name and Local SIP port should be matched in Session Manager configuration (in Section 6.2 and 6.6).

Figure 17 – Virtual Trunk Gateway Configuration Details
Click on the **SIP Gateway Settings** tab, under **Proxy or Redirect Server**, enter the following values (highlighted in red boxes) for the specified fields, and retain the default values for the remaining fields as shown in **Figure 18**. Enter **Primary TLAN IP address** as the IP address of Session Manager. Enter **Port**: 5060 and **Transport protocol**: UDP. Uncheck **Support registration** checkbox.

![Figure 18 – Virtual Trunk Gateway Configuration Details](image)

On the same page as shown in **Figure 18**, scroll down to the **SIP URI Map** section. Under the **Public E.164 domain names**, for:

- **National**: leave this SIP URI field as blank
- **Subscriber**: leave this SIP URI field as blank
- **Special Number**: leave this SIP URI field as blank
- **Unknown**: leave this SIP URI field as blank

Under the **Private domain names**, for:

- **UDP**: leave this SIP URI field as blank
- **CDP**: leave this SIP URI field as blank
- **Special Number**: leave this SIP URI field as blank
- **Vacant number**: leave this SIP URI field as blank
- **Unknown**: leave this SIP URI field as blank
The remaining fields can be left at their default values as shown in Figure 19. Then click on the Save button.

![Figure 19 – Virtual Trunk Gateway Configuration Details](image)

Synchronize the new configuration (please refer to Section 5.2.4).

5.5.3. Administer Virtual D-Channel

Select Routes and Trunks → D-Channels (not shown) from the left pane to display the D-Channels screen. In the **Choose a D-Channel Number** field, select an available D-channel from the drop-down list and type DCH as shown in Figure 20. Click the to Add button.

![Figure 20 – D-Channels](image)
The **D-Channels 100 Property Configuration** screen is displayed next, as shown in **Figure 21**. Enter the following values for the specified fields, and retain the default values for the remaining fields.

- **D channel Card Type**: D-Channel is over IP (DCIP)
- **Designator**: A descriptive name
- **User**: Integrated Services Signaling Link Dedicated (ISLD)
- **Interface type for D-channel**: Meridian Meridian1 (SL1)
- **Meridian 1 node type**: Slave to the controller (USR)
- **Release ID of the switch at the far end**: 25

Click on **Advanced options (ADVOP)**. Check on the **Network Attendant Service Allowed** checkbox as shown in **Figure 21**. Other fields are left as default.

![Figure 21 – D-Channels Configuration Details](image-url)
Click on the **Basic Options (BSCOPT)** and click on the **Edit** button on the **Remote Capabilities** field. The **Remote Capabilities Configuration** page will appear. Check on the ND2 and the MWI checkboxes as shown in **Figures 23**.

Figure 22 – D-Channel Configuration Details 2
Figure 23 – Remote Capabilities Configuration Details

Click on the Return – Remote Capabilities button (not shown).
Click on the Submit button (not shown).

5.5.4. Administer Virtual Super-Loop

Select System → Core Equipment → Superloops from the left pane to display the Superloops screen. If the Superloop does not exist, please click the Add button to create a new one as shown in Figure 24. In this example, Superloop 4, 96, 100, 104 and 124 have been added and are being used.

Figure 24 – Administer Virtual Super-Loop Page
5.5.5. Administer Virtual SIP Routes

Select Routes and Trunks → Routes and Trunks (not shown) from the left pane to display the Routes and Trunks screen. In this example, Customer 0 is being used. Click on the Add route button as shown in Figure 25.

![Figure 25 – Add route](image)

The Customer 0, New Route Configuration screen is displayed next (not shown). The Basic Configuration section is displayed to put the following values for the specific fields, and retain the default values for the remaining fields. The screenshot of Basic Configuration section of existing route 100 is displayed to edit as shown in Figures 26.

- Route number (ROUT): Select an available route number (example: route 100).
- Designator field for trunk (DES): A descriptive text (100).
- Trunk type (TKTP): TIE trunk data block (TIE)
- Incoming and outgoing trunk (ICOG): Incoming and Outgoing (IAO)
- Access code for the trunk route (ACOD): An available access code (example: 8100).
- Check the The route is for a virtual trunk route (VTRK) field, to enable four additional fields to appear.
- For the Zone for codec selection and bandwidth management (ZONE) field, enter 255 (created in Section 5.4.2). Note: The Zone value is filled out 255, but after it is added, the screen is displayed with prefix 00.
- For the Node ID of signaling server of this route (NODE) field, enter the node number 3000 (created in Section 5.2.1).
- Select SIP (SIP) from the drop-down list for the Protocol ID for the route (PCID) field.
- Check the Integrated Services Digital Network option (ISDN) checkbox to enable additional fields to appear. Enter the following values for the specified fields, and retain the default values for the remaining fields. Scroll down to the bottom of the screen.
 - Mode of operation (MODE): Select Route uses ISDN Signalling Link (ISLD)
 - D channel number (DCH): Enter 100 (created in Section 5.5.3)
 - Network calling name allowed (NCNA): Check the field.
 - Network call redirection (NCRD): Check the field.
 - Insert ESN access code (INAC): Check the field.
Figure 26 – Route Configuration Details 1
Click on **Basic Route Options**, check the **North American toll scheme (NATL)** and **Incoming DID digit conversion on this route (IDC)** checkboxes. Enter 1 for both **Day IDC tree number** and **Night IDC tree number** as shown in **Figure 27**. Click on the **Submit** button.

Figure 27 – Route Configuration Details 2
5.5.6. Administer Virtual Trunks

Select **Routes and Trunks → Route and Trunks** (not shown). The Route list is now updated with the newly added routes. In the example, the Route 100 was being added. Click on the **Add trunk** button as shown in **Figure 28**.

![CS1000 Element Manager](image)

Figure 28 – Routes and Trunks Page

The **Customer 0, Route 100, Trunk 1 Property Configuration** screen is displayed. Enter the following values for the specified fields and retain the default values for the remaining fields. The Media Security (sRTP) needs to be disabled at the trunk level by editing the **Class of Service** (CLS) at the bottom of the basic trunk configuration page. Click on the **Edit** button as shown in **Figure 29**.

Note: The Multiple trunk input number (MTINPUT) field may be used to add multiple trunks in a single operation, or repeat the operation for each trunk. In the sample configuration, 32 trunks were created.

- **Trunk data block**: IP Trunk (IPTI)
- **Terminal Number**: Available terminal number (created in **Section 5.5.4**)
- **Designator field for trunk**: A descriptive text
- **Extended Trunk**: Virtual trunk (VTRK)
- **Member number**: Current route number and starting member
- **Card Density**: 8D
- **Start arrangement Incoming**: Immediate (IMM)
- **Start arrangement Outgoing**: Immediate (IMM)
- **Trunk group access restriction**: Desired trunk group access restriction level
- **Channel ID for this trunk**: An available starting channel ID
Figure 29 – New Trunk Configuration Details
For **Media Security**, select **Media Security Never (MSNV)**. Enter the remaining values for the specified fields as shown in **Figure 30**. Scroll down to the bottom of the screen and click **Return Class of Service** and click on the **Save** button (not shown).

Figure 30 – Class of Service Configuration Details Page
5.5.7. Administer Calling Line Identification Entries

Select Customers → 00 → ISDN and ESN Networking. Click on Calling Line Identification Entries as shown in Figure 31.

![Image of ISDN and ESN Networking](image1.png)

Figure 31 – ISDN and ESN Networking

Click on Add as shown in Figure 32.

![Image of Calling Line Identification Entries](image2.png)

Figure 32 – Calling Line Identification Entries
Add entry 0 screen is displayed to put the following values for the specified fields and retain the default values for the remaining fields. The Edit Calling Line Identification of existing entry 0 is displayed as shown in Figure 33:

- **National Code**: input prefix digits assigned by Service Provider, in this case it is 3 digits – 214.
- **Local Code**: input prefix digits assigned by Service Provider, in this case it is 3 digits – 635. This **Local Code** will be used for call display purpose for Call Type = Unknown.
- **Home Location Code**: input prefix digits assigned by Service Provider, in this case it is 6 digits - 214635. This **Home Location Code** will be used for call display purpose for Call Type = National (NPA).
- **Local Steering Code**: input prefix digits assigned by Service Provider, in this case it is 6 digits - 214635. This **Local Steering Code** will be used for call display purpose for Call Type = Local Subscriber (NXX).
- **Calling Party Name Display**: Uncheck for Roman characters.

Click on the **Save** button as shown in Figure 33.

![Figure 33 – Edit Calling Line Identification 0](image)
5.5.8. Enable External Trunk to Trunk Transfer

This section shows how to enable External Trunk to Trunk Transfer feature which is a mandatory configuration to make call transfer and conference work properly over a SIP trunk.

Log in Call Server Overlay CLI (please refer to Section 5.1.2 for more detail).
Allow External Trunk to Trunk Transfer for Customer Data Block by using **LD 15**.

```
>ld 15
CDB000
MEM AVAIL: (U/P): 33600126 USED U P: 8345621 954062 TOT: 45579868
DISK SPACE NEEDED: 1722 KBYTES
REQ: chg
TYPE: net

TYPE NET_DATA
CUST 0
OPT
...
TRNX YES (⇒ Enable transfer feature)
EXTT YES (⇒ Enable external trunk to trunk Transfer)
...
```
5.6. Administer Dialing Plans

5.6.1. Define ESN Access Codes and Parameters (ESN)

Select Dialing and Numbering Plans ➔ Electronic Switched Network from the left pane to display the Electronic Switched Network (ESN) screen as shown in Figure 34.

![Figure 34 – ESN Configuration Details](image-url)
In the ESN Access Codes and Basic Parameters page, define NARS/BARS Access Code 1 as shown in Figure 35.
Click the Submit button (not shown).
5.6.2. Associate NPA and SPN call to ESN Access Code 1

Log in Call Server CLI (please refer to Section 5.1.2 for more detail), change Customer Net Data block by using LD 15.

>ld 15
CDB000
MEM AVAIL: (U/P): 35600086 USED U P: 8325631 954152 TOT: 44879869
DISK SPACE NEEDED: 1722 KBYTES
REQ: chg
TYPE: net

TYPE NET_DATA
CUST 0
OPT
AC2 xNPA xSPN ➔ (Set NPA, SPN not to associate to ESN Access Code 2)
FNP
CLID
...

Verify Customer Net Data block by using LD 21.

>ld 21
PT1000

REQ: prt
TYPE: net
TYPE NET_DATA
CUST 0

TYPE NET_DATA
CUST 00
OPT RTA
AC1 INTL NPA SPN NXX LOC ------ ➔ (NPA, SPN are associated to ESN Access Code 1)
AC2
FNP YES
...

5.6.3. Digit Manipulation Block (DMI)

Select Dialing and Numbering Plans → Electronic Switched Network (not shown) from the left pane to display the Electronic Switched Network (ESN) screen. Select Digit Manipulation Block (DGT) as shown in Figure 34. Select an available DMI from the drop-down list and click to Add as shown in Figure 36. Enter the Number of leading digits to be Deleted (Del) field and select the Call Type to be used by the manipulated digits (CTYP) and then click Submit (see Figure 37, Figure 38).

5.6.4. Digit Manipulation Block Index (DMI) for Outbound Call

The following steps show how to add DMI for the outbound call. There is an index, which was added to the Digit Manipulation Block List (14).

Select Dialing and Numbering Plans → Electronic Switched Network from the left pane to display the Electronic Switched Network (ESN) screen. Select Digit Manipulation Block (DGT). The Digit Manipulation Block List is displayed as shown in Figure 36. In the Please choose the Digit Manipulation Block Index from the drop-down list, select an available DMI from the drop-down list and click on to Add button.

Figure 36 – Add a DMI

Add DMI_14: Enter 0 for the Number of leading digits to be deleted field and select NPA for the Call Type to be used by the manipulated digits and then click on Submit button as shown in Figure 37.

Figure 37 – DMI_14 Configuration Details
5.6.5. Route List Block (RLB) (RLB 14)

This session shows how to add a RLB associated with the DMI created in Section 5.6.4. Select Dialing and Numbering Plans → Electronic Switched Network from the left pane to display the Electronic Switched Network (ESN) screen (not shown). Select Route List Block (RLB) as shown in Figure 34.

Enter an available value in the textbox for the Please enter a route list index (in this case 14) and click on to Add button as shown in Figure 38.

![Figure 38 – Add a Route List Block.](image)

Enter the following values for the specified fields, and retain the default values for the remaining fields (Figure 39). Scroll down to the bottom of the screen, and click on the Submit button (not shown).

- **Digit Manipulation Index**: 14 (created in Section 5.6.4)
- **Incoming CLID Table**: 0 (created in Section 5.5.7)
- **Route number**: 100 (created in Section 5.5.5)
5.6.6. Inbound Call – Incoming Digit Translation Configuration

This section describes the steps for receiving the calls from PSTN via the XO Communications system.

Select **Dialing and Numbering Plans → Incoming Digit Translation** (not shown) from the left pane to display the **Incoming Digit Translation** screen. Click on the **Edit IDC** button as shown in **Figure 40**.

![Incoming Digit Translation](image)

Figure 40 – Incoming Digit Translation

Click on the **New DCNO** to create the digit translation mechanism. In this example, Digit Conversion Tree Number 1 has been created as shown in **Figure 41**.

![Incoming Digit Translation](image)

Figure 41 – Digit Conversion Tree Number 1
Figure 41 – Incoming Digit Conversion Property

Detail configuration of the Digit Conversion Tree Configuration is shown in Figure 42. The Incoming Digits can be added to map to the Converted Digits which would be the Communication Server 1000 system phones DN. This DCNO has been assigned to route 100 as shown in Figure 26 and 27.

In the following configuration, the incoming call from PSTN with DID with prefix 214635 will be translated to the appropriated DN with 4 digits. The DID number 2146355889 is translated to 1700 for Voicemail accessing purpose.

Figure 42 – Digit Conversion Tree
5.6.7. Outbound Call - Special Number Configuration

There are special numbers which have been configured to be used for this testing such as: 0, 011, 1800, 411, 911 and so on.

Select **Dialing and Numbering Plans → Electronic Switched Network** from the left pane to display the **Electronic Switched Network (ESN)** screen (not shown). Select **Special Number (SPN)** as shown in **Figure 34**. Enter SPN number and then click on **Add** button. **Figure 43** shows all the special number used for this testing.

![Figure 43 – Add a SPN](image-url)
5.6.8. Outbound Call - Numbering Plan Area (NPA)

This section describes the creation of NPA used in this test configuration.

Select **Dialing and Numbering Plans** → **Electronic Switched Network** from the left pane to display the **Electronic Switched Network** (ESN) screen (not shown). Select **Numbering Plan Area Code** (NPA) as shown in Figure 34. Enter the area code desired in the textbox and click on the **to Add** button. The 1214, 1613, 1647, 613 area codes were used in this configuration as shown in Figure 44.

![Figure 44 – Numbering Plan Area Code List](image-url)
5.7. Administer Phone

This section describes the creation of Communication Server 1000 clients used in this configuration.

5.7.1. Phone creation

Refer to Section 5.5.4 to create a virtual superloop - 96 used for IP phone.
Refer to Section 5.4.1 to create a bandwidth zone - 10 for IP phone.

Log in to the Call Server Command Line Interface (please refer to Section 5.1.2 for more detail).

Create an IP phone by using LD 11

```
REQ: prt
TYPE: 2002p2
TN 96 0 0 2

DATE
PAGE
DES
MODEL_NAME
EMULATED

DES 2002P2 < --- Describe information for IP Phone
TN 96 00002 VIRTUAL < --- Set Terminal Number for IP Phone
TYPE 2002P2
CDEN 8D
CTYP XDLC
CUST 0
NUID
NHTN
CFG_ZONE 00010 < --- Set bandwidth zone for IP phone
CUR_ZONE 00010
MRT
ERL 12345
ECL 0
FDN
TGAR 0
LDN NO
NCOS 7
SGRP 0
RNPG 0
SCI 0
SSU
LNRS 16
XLST
SCPW
SFLT NO
CAC_MFC 0

CLS UNR FBD WTA LPR MTD FND HTD TDD CRPD
MWD LMPN RMMD SMWD AAD IMD XHD IRD NID OLD VCE DRG1
POD SLKD CSSD SWD LNA CNDA
CFTD SFD MRD DDV CNID CDCA MSID DAPA BFED RCBD
ICDD CDMD LLCN MCTD CLBD AUTU
GPUD DPUD DNDD CFXD ARHD CLTD ASCD
```
KEY 00 SCR 5890 0 MARP < --- Set the position of DN 5890 to display on key 0 of the phone
CPND
 CPND_LANG ROMAN
 NAME XO_01 < --- Set name to display
 XPLN 13
 DISPLAY_FMT FIRST,LAST
01
02
<Text removed for brevity>
5.7.2. Enable Privacy for Phone

In this section, it shows how to enable Privacy for a phone by changing its class of service (CLS). By modifying the configuration of the phone created in Section 5.7.1, the display of the outbound call will be changed appropriately.

To hide the display number, set cls to ddgd. Communication Server 1000 will include “Privacy:id” in the SIP message header before sending it to the Service Provider.

```
>ld 11
REQ: chg
TYPE: 2002p2
TN   96 0 0 2
ECHG yes
ITEM cls ddgd
```

To allow display number, set cls to ddga. Communication Server 1000 will not send the Privacy header to the Service Provider.

```
>ld 11
REQ: chg
TYPE: 2002p2
TN   96 0 0 2
ECHG yes
ITEM cls ddga
```
5.7.3. Enable Call Forward for Phone

In this section, it shows how to configure the Call Forward feature at the system and phone level. Select Customer → 00 → Call Redirection. The Call Redirection page is shown in Figure 45.

- Total redirection count limit: 0 (unlimited)
- Call Forward: Originating
- Number of normal ring cycle for CFNA: 4
- Click Save to save the configuration.

Figure 45 – Call Redirection

To enable Call Forward All Call (CFAC) for a phone over a trunk, use LD 11, change its CLS to CFXA, SFA then program the forward number on the phone set. Following is the configuration of a phone that has CFAC enabled with forwarding number 616139675205.

REQ: prt
TYPE: 2007
TN 96 0 0 4
To enable Call Forward Busy (CFB) for phone over trunk by using LD 11, change its CLS to FBA, HTA, SFA then program the forward number as is HUNT. Following is the configuration of a phone has CFB enabled with forward number is 616139675205.

```
REQ: prt
TYPE: 2007
TN 96 0 0 4
DATE
PAGE
DES
MODEL_NAME
EMULATED

DES 2007
TN 96 0 0 0 4 VIRTUAL
TYPE 2007
...
CLS UNR FBA WTA LPR MTD FNA HTA TDD HFD CRPD
    MWA LMPN RMMD SMWD AAD IMD XHD IRD NID OLD VCE DRG1
    POD SLKD CCSD SWD LNA CNDA
    CFTD SFA MRD DDV CNID CDCA MSID DAPA BFED RCBD
    ICDA CDMA LLCN MCTD CLBD AUTU
    GPUD DPUD DNDD CFXA ARHD CLTD ASCD
...
FDN 616139675205
HUNT 616139675205
```

To enable Call Forward No Answer (CFNA) for a phone over a trunk by using LD 11, change its CLS to FNA, SFA then program the forward number as FDN. Following is the configuration of a phone that has CFNA enabled with forward number 616139675205.

```
REQ: prt
TYPE: 2007
TN 96 0 0 4
DATE
PAGE
DES
MODEL_NAME
EMULATED

DES 2007
TN 96 0 0 0 4 VIRTUAL
TYPE 2007
...
CLS UNR FBA WTA LPR MTD FNA HTA TDD HFD CRPD
    MWA LMPN RMMD SMWD AAD IMD XHD IRD NID OLD VCE DRG1
    POD SLKD CCSD SWD LNA CNDA
    CFTD SFA MRD DDV CNID CDCA MSID DAPA BFED RCBD
...
FDN 616139675205
HUNT 616139675205
```
5.7.4. Enable Call Waiting for Phone

In this section, it shows how to configure Call Waiting feature at phone level.
Log in to the Call Server CLI (please refer to Section 5.1.2 for more detail), configure Call Waiting feature for phone by using LD 11 to change CLS to HTD, SWA and adding a CWT key.

REQ: prt
TYPE: 2002p2

TN 96 0 0 2
DATE
PAGE
DES
MODEL_NAME
EMULATED
KEM_RANGE

DES 2002P2
TN 96 0 00 02 VIRTUAL
TYPE 2002P2

CLS UNR FBD WTA LPR MTD FNA HTD TDD HFD CRPD
 MWA LMPN RMMN SMWD AAD IMD XHD IRD NID OLD VCE DRG1
 POD SLKD CCSD SWD LNA CNDA
 CFTD SFA MRD DDV CNID CDCA MSID DAPA BFED RCBD

KEY 00 SCR 5890 0 MARP
 CPND
 CPND_LANG ROMAN
 NAME XO_01
 XPLN 13
 DISPLAY_FMT FIRST,LAST

01 CWT
6. Configure Avaya Aura® Session Manager

This section provides the procedures for configuring Session Manager. The procedures include configuring the following items:

- SIP Domain.
- Logical/physical Location that can be occupied by SIP Entities.
- Adaptation module to perform dial plan manipulation.
- SIP Entities corresponding to Communication Server 1000, SBCE and Session Manager.
- Entity Links, which define the SIP trunk parameters used by Session Manager when routing calls to/from SIP Entities.
- Routing Policies, which define route destinations and control call routing between the SIP Entities.
- Dial Patterns, which specify dialed digits and govern which Routing Policy is used to service a call.

It may not be necessary to create all the items above when configuring a connection to the service provider since some of these items would have already been defined as part of the initial Session Manager installation. This includes items such as certain SIP Domains, Locations, SIP Entities, and Session Manager itself. However, each item should be reviewed to verify the configuration.
6.1. Avaya Aura® System Manager Login and Navigation

Session Manager configuration is accomplished by accessing the browser-based GUI of System Manager, using the URL “https://<ip-address>/SMGR”, where “<ip-address>” is the IP address of System Manager. At the System Manager Log On screen, enter appropriate User ID and Password and press the Log On button (not shown). The initial screen shown below is then displayed.

![System Manager Home Screen](image)

Figure 46 – System Manager Home Screen

Most of the configuration items are performed in the Routing Element. Click on Routing in the Elements column to bring up the Introduction to Network Routing Policy screen.
The navigation tree displayed in the left pane will be referenced in subsequent sections to navigate to items requiring configuration.

Figure 47 – Network Routing Policy
6.2. Specify SIP Domain

Create a SIP Domain for each domain of which Session Manager will need to be aware in order to route calls. For the compliance test, this includes the enterprise domain \texttt{bwdev7.com}.

Navigate to \textbf{Routing \rightarrow Domains} in the left-hand navigation pane and click the \textbf{New} button in the right pane. In the new right pane that appears (not shown), fill in the following:

- **Name**: Enter the domain name.
- **Type**: Select \texttt{sip} from the pull-down menu.
- **Notes**: Add a brief description (optional).

Click \textbf{Commit} (not shown) to save.

The screen below shows the existing entry for the enterprise domain.

![Figure 48 – Domain Management](image)

XO1K75SM62SBCE
6.3. Configure Adaptations

Adaptation is configured to format the History Info on Communication Server 1000 to be compatible with Avaya History Info form. In order to add a new adaptation, select Routing → Adaptations. Click the New button to add an adaptation. Enter an appropriate Adaptation name to identify the adaptation. Select CS1000Adapter from the Module name drop-down menu. Click the Commit button after changes are completed.

![AVAYA](image)

Figure 48 - CS1000 Adaptation

Adaptation is configured to convert the History Info to Diversion Header. In order to add a new adaptation, select Routing → Adaptations. Click the New button to add an adaptation. Enter an appropriate Adaptation name to identify the adaptation. Select DiversionTypeAdapter from the Module name drop-down menu. Enter value of Module parameter as MINE=no. Click the Commit button after changes are completed.

![AVAYA](image)

Figure 49 – Diversion Header Adaptation

6.4. Add Location

Locations can be used to identify logical and/or physical locations where SIP Entities reside for purposes of bandwidth management and call admission control. A single Location was defined for the enterprise even though multiple subnets were used. The screens below show the addition
of the Location named **Belleville**, which includes all equipment in the enterprise including Communication Server 1000, Session Manager and SBCE.

To add a Location, navigate to **Routing → Locations** in the left-hand navigation pane and click the **New** button in the right pane (not shown). In the new right pane that appears (shown below), fill in the following:

In the **General** section, enter the following values. Use default values for all remaining fields.

- **Name**: Enter a descriptive name for the Location.
- **Notes**: Add a brief description (optional).

![Figure 50 – Location Configuration](image)

In the **Location Pattern** section, Click **Add** to enter IP Address pattern as the following values.

- **IP Address Pattern**: 10.10.97.*, 10.33.*.
Click **Commit** to save.

Note that call bandwidth management parameters should be set per customer requirement.

6.5. Add SIP Entities

A SIP Entity must be added for Session Manager and for each SIP telephony system connected to Session Manager which includes Communication Server 1000 and SBCE. Navigate to **Routing ➔ SIP Entities** in the left-hand navigation pane and click on the **New** button in the right pane (not shown). In the new right pane that appears (shown below), fill in the following:

In the **General** section, enter the following values. Use default values for all remaining fields.

- **Name:** Enter a descriptive name.
- **FQDN or IP Address:** Enter the FQDN or IP address of the SIP Entity that is used for SIP signaling.
- **Type:** Select **Session Manager** for Session Manager, **Other** for Communications Server 1000 and SBCE.
- **Adaptation:** This field is only present if **Type** is not set to **Session Manager**. If applicable, select the appropriate Adaptation module that will be applied to the SIP Entity being created.
- **Location:** Select the Location that applies to the SIP Entity being created. For the compliance test, all components were located in Location **Belleville**.
- **Time Zone:** Select the time zone for the Location above.

In this configuration, there are three SIP Entities.

- Session Manager SIP Entity
- Communication Manager 1000 SIP Entity
- Session Border Controller for Enterprise SIP Entity

Figure 51 – IP Ranges Configuration
6.5.1. Configure Session Manager SIP Entity

The following screen shows the addition of the Session Manager SIP Entity named InteropSM. The IP address of Session Manager’s signaling interface is entered for FQDN or IP Address 10.33.1.11. The Location field is set to Belleville. Select Time Zone as America/Toronto.

![Session Manager SIP Entity](image)

Figure 52 – Session Manager SIP Entity

To define the ports used by Session Manager, scroll down to the Port section of the SIP Entity Details screen. This section is only present for the Session Manager SIP Entity.

In the Port section, click Add and enter the following values. Use default values for all remaining fields:

- **Port:** Port number on which Session Manager listens for SIP requests.
- **Protocol:** Transport protocol to be used with this port.
- **Default Domain:** The default domain associated with this port. For the compliance test, this was the enterprise SIP Domain.

Defaults can be used for the remaining fields. Click Commit (not shown) to save.

The compliance test used port **5060** with UDP for connecting to Communication Server 1000 and SBCE.

Other entries defined for other projects as shown in the screen were not used.
6.5.2. Configure Communication Server 1000 SIP Entity

The following screen shows the addition of the Communication Server 1000 SIP Entity named car3-ssg-carrier. In order for Session Manager to send SIP service provider traffic on a separate Entity Link to Communication Server 1000, it is necessary to create a separate SIP Entity for Communication Server in addition to the one created at Session Manager installation for use with all other SIP traffic within the enterprise. The FQDN or IP Address field is set to the IP address of Communication Server 1000 10.10.97.178. Select Adaptation as CS1K_R75_Adaptation (in Section 6.3). The Location field is set to Belleville which is the Location that includes the subnet where Communication Server resides. Select Time Zone as America/Toronto and Type as Other.

6.5.3. Configure SBCE SIP Entity

The following screen shows the addition of SBCE SIP entity named AvayaSBCE_UDP. The FQDN or IP Address field is set to the IP address of the SBC’s private network interface.
10.10.97.189. Select Adaptation as XO_Diversion_Header (in Section 6.3). The Location field is set to Belleville which includes the subnet where the SBCE resides. Select Time Zone as America/Toronto and Type as Other.

![Figure 55 – Avaya SBCE SIP Entity](image)

6.6. Add Entity Links

A SIP trunk between Session Manager and a telephony system is described by an Entity Link. Two Entity Links were created: one to Communication Server 1000 for use only by service provider traffic and one to the SBCE.

To add an Entity Link, navigate to **Routing → Entity Links** in the left-hand navigation pane and click on the **New** button in the right pane (not shown). In the new right pane that appears (shown below), fill in the following:

- **Name:** Enter a descriptive name.
- **SIP Entity 1:** Select the Session Manager being used.
- **Protocol:** Select the transport protocol used for this link.
- **Port:** Port number on which Session Manager will receive SIP requests from the far-end.
- **SIP Entity 2:** Select the name of the other system as defined in Section 6.5.
- **Port:** Port number on which the other system receives SIP requests from the Session Manager. For the Communication Server 1000 Entity Link, this must match the port defined on the Communication Server in Section 5.5.2.
- **Trusted:** Check this box. Note: If this box is not checked, calls from the associated SIP Entity specified in Section 6.5 will be denied.
Click **Commit** to save.

The following screens illustrate the Entity Link to Communication Server 1000. The protocol and ports defined here must match the values used on the Communication Server signaling in **Section 5.5.2**.

![Image of CS1000 Entity Link](image)

Figure 56 – CS1000 Entity Link
The following screens illustrate the Entity Links to SBCE. The protocol and ports defined here must match the values used on the SBCE mentioned in Section 7.2.6

![Figure 57 – Avaya SBCE Entity Link](image1)

6.7. Configure Time Ranges

Time Ranges is configured for time-based routing. In order to add a Time Ranges, select Routing → Time Ranges and then click New button. The Routing Policies shown subsequently will use the 24/7 range since time-based routing was not the focus of these Application Notes.

![Figure 58 – Time Ranges](image2)

6.8. Add Routing Policies

Routing Policies describe the conditions under which calls will be routed to the SIP Entities specified in Section 6.5. Two Routing Policies must be added: one for Communication Server 1000 and one for SBCE. To add a Routing Policy, navigate to Routing → Routing Policies in the left-hand navigation pane and click on the New button in the right pane (not shown). In the new right pane that appears (shown below), fill in the following:

In the General section, enter the following values. Use default values for all remaining fields.

- **Name:** Enter a descriptive name.
Notes: Add a brief description (optional).

In the **SIP Entity as Destination** section, click Select. The SIP Entity List page opens (not shown). Select the appropriate SIP Entity to which this Routing Policy applies and click Select. The selected SIP Entity displays on the **Routing Policy Details** page as shown below. Use default values for remaining fields. Click **Commit** to save.

The following screen shows the **Routing Policy Details** for the policy named **To_Car3_ssg_carrier** associated with incoming PSTN calls from XO Communications to Communication Server 1000. Observe the **SIP Entity as Destination** is the entity named **car3_ssg_carrier**.

![Routing Policy Details](image)

Figure 59 – Routing to CS1000
The following screen shows the Routing Policy Details for the policy named To_XO_Communications associated with outgoing calls from Communication Server 1000 to the PSTN via XO Communications through the SBCE. Observe the SIP Entity as Destination is the entity named AvayaSBCE_UDP.

![Routing Policy Details Screen](image)

Figure 60 – Routing to XO Communications

6.9. Add Dial Patterns

Dial Patterns are needed to route calls through Session Manager. For the compliance test, Dial Patterns were configured to route calls from Communication Server 1000 to XO Communications and vice versa. Dial Patterns define which Route Policy will be selected as route destination for a particular call based on the dialed digits, destination Domain and originating Location.

To add a Dial Pattern, navigate to **Routing ➔ Dial Patterns** in the left-hand navigation pane and click on the **New** button in the right pane (not shown). In the new right pane that appears (shown below), fill in the following:

In the **General** section, enter the following values. Use default values for all remaining fields.

- **Pattern:** Enter a dial string that will be matched against the Request-URI of the call.
- **Min:** Enter a minimum length used in the match criteria.
- **Max:** Enter a maximum length used in the match criteria.
- **SIP Domain:** Enter the destination domain used in the match criteria.
- **Notes:** Add a brief description (optional).

In the **Originating Locations and Routing Policies** section, click **Add**. From the **Originating Locations and Routing Policy List** that appears (not shown), select the appropriate originating Location for use in the match criteria. Lastly, select the Routing Policy from the list that will be used to route all calls that match the specified criteria. Click **Select**.
Default values can be used for the remaining fields. Click **Commit** to save.
Two examples of the Dial Patterns used for the compliance test are shown below, one for outbound calls from the enterprise to the PSTN and one for inbound calls from the PSTN to the enterprise. Other Dial Patterns (e.g., 1800 Toll free call, 011 international call, etc.) were similarly defined.

The first example shows that outbound 11-digit dialed numbers that begin with **1613** and have a destination SIP Domain of **bvwdev7.com** uses the **AvayaSBCE_UDP** Routing Policy as defined in **Section 6.8**.

![Figure 61 – Dial Pattern_1613](image)

Note that the above Dial Pattern did not restrict outbound calls to specific US area codes. In real deployments, appropriate restriction can be exercised per customer business policies.

The second example shows that inbound 10-digit numbers that start with **214** uses Routing Policy **car3_ssg_carrier** as defined in **Section 6.8**. This Dial Pattern matches the DID numbers assigned to the enterprise by XO Communications.
The following screen illustrates a list of dial patterns used for inbound and outbound calls between the enterprise and the PSTN.

Figure 62 – Dial Pattern_214

Figure 63 – Dial Pattern List
7. Configure Session Border Controller for Enterprise

This section describes the configuration of the SBCE necessary for interoperability with the Session Manager and XO Communications system.

In this testing, according to the configuration reference Figure 1, the Avaya elements reside on the Private side and the XO Communications system reside on the Public side of the network.

Note: The following section assumes that SBCE has been installed and that network connectivity exists between the systems. For more information on SBCE, see Section 11 of these Application Notes.
7.1. Log in SBCE
Access the web interface by typing “https://x.x.x.x” (where x.x.x.x is the management IP of the Avaya SBCE).

![Figure 64: Avaya SBCE Web Interface](image)

Select **UC-Sec Control Center** and enter the **Login ID** and **Password**.

![Figure 65: Avaya SBCE Login](image)

7.2. Global Profiles
When selected, Global Profiles allows for configuration of parameters across all UC-Sec appliances.
7.2.1. Configure Server Interworking - Avaya site

Server Interworking allows one to configure and manage various SIP call server-specific capabilities such as call hold, 180 Handling, etc.

From the menu on the left-hand side, select Global Profiles → Server Interworking → Add Profile:

- Enter Profile name: SM62
- Check Hold Support as RFC2543
- Check Diversion Header Support as Yes.
- All other options on the General Tab can be left at default.

On the Timers, URI Manipulation, Header Manipulation and Advanced Tabs: all options can be left at default. Click Finish (not shown).

The following screen is shown that Session Manager server interworking (named: SM62) was added.

![Server Interworking Setup](image)

Figure 66: Server Interworking – Avaya site

7.2.2. Configure Server Interworking – XO Communications site

From the menu on the left-hand side, select Global Profiles → Server Internetworking → Add Profile

- Enter Profile name: XO_Communications
- Check Hold Support as RFC2543.
- Check Diversion Header Support as Yes.
- Check T.38 Support as Yes.
- All other options on the General Tab can be left at default.

On the Timers, URI Manipulation, Header Manipulation and Advanced Tabs: all options can be left at default. Click Finish (not shown).

The following screen is shown that XO Communications server interworking (named: XO Communications) was added.

![Image](image_url)

Figure 67: Server Interworking – XO Communications site

7.2.3. Configure URI Groups

The URI Group feature allows to create any number of logical URI groups that comprised of individual SIP subscribers located in that particular domain or group.

From the menu on the left-hand side, select Global Profiles ➔ URI Groups. Select Add Groups

- Enter Group Name: Xo_Communications
- Edit the URI Type: Plain (not shown)
- Add URI: *@10.10.98.112* (Avaya SBCE public interface IP address),
 @192.168.163.138 (XO Communication SONUS Switch IP address),
 @anonymous.invalid (Anonymous URI), *@bvwdev7.com* (Enterprise domain)
- Click Finish (not shown)

Figure 68: URI Group

7.2.4. Configure Routing – Avaya Site

Routing profiles define a specific set of packet routing criteria that are used in conjunction with other types of domain policies to identify a particular call flow and thereby ascertain which security features will be applied to those packets. Parameters defined by Routing Profiles include packet transport settings, name server addresses and resolution methods, next hop routing information, and packet transport types.

From the menu on the left-hand side, select **Global Profiles ➔ Routing ➔ Add Profile.**

- **Enter Profile Name:** XO_To_SM62.
- **URI Group:** Xo_Communications
- **Next Hop Server 1:** 10.33.1.11 (Session Manager IP address)
- **Check Next Hop Priority.**
- **Outgoing Transport:** UDP
- **Click Finish** (not shown).

Figure 69: Routing to Avaya
7.2.5. Configure Routing – XO Communications Site
The Routing Profile allows one to manage parameters related to routing SIP signaling messages.

From the menu on the left-hand side, select Global Profiles → Routing → Add Profile.
Enter Profile Name: SM62_To_XO.
- URI Group: Xo_Communications
- Next Hop Server 1: 192.168.163.138 (IP Address provided by Customer)
- Check Next Hop Priority
- Outgoing Transport as UDP
- Click Finish (not shown).

![Figure 70: Routing to XO Communications](image)

7.2.6. Configure Server – Session Manager
The Server Configuration screen contains four tabs: General, Authentication, Heartbeat, and Advanced. Together, these tabs allow one to configure and manage various SIP call server-specific parameters such as UDP port assignment, IP Server type, heartbeat signaling parameters and some advanced options.

From the menu on the left-hand side, select Global Profiles → Server Configuration → Add Profile.
Enter profile name: SM62.
On General tab:
- Server Type: Select Call Server
- IP Address/FQDNs: 10.33.1.11 (Session Manager IP Address)
- Supported Transports: UDP
- UDP Port: 5060
On the Advanced tab, select SM62 for Interworking Profile.
Click Finish (not shown).

7.2.7. Configure Server – XO Communications

From the menu on the left-hand side, select Global Profiles → Server Configuration → Add Profile.
Enter profile name: XO_Communications.
On General tab:
- **Server Type**: Select Trunk Server
- **IP Address**: 192.168.163.138 (XO Communications SONUS Switch IP Address)
- **Supported Transports**: UDP
- **UDP Port**: 5060
7.2.8. Configure Topology Hiding – Avaya Site

The Topology Hiding screen allows one to manage how various source, destination and routing information in SIP and SDP message headers are substituted or changed to maintain the integrity of the network. It hides the topology of the enterprise network from external networks.

From the menu on the left-hand side, select Global Profiles → Topology Hiding. Select Add Profile, enter Profile Name: XO_To_SM62.

- For the Header To,
 - In the Criteria column select IP/Domain
 - In the Replace Action column select: Overwrite
 - In the Overwrite Value column: bvwdev7.com

- For the Header From,
 - In the Criteria column select IP/Domain
 - In the Replace Action column select: Overwrite
 - In the Overwrite Value column: bvwdev7.com
- For the Header Request-Line,
 - In the Criteria column select IP/Domain
 - In the Replace Action column select: Overwrite
 - In the Overwrite Value column: bvwdev7.com

Figure 75: Topology Hiding Session Manager

7.2.9. Configure Topology Hiding – XO Communications Site

From the menu on the left-hand side, select Global Profiles → Topology Hiding.
Select Add Profile, enter Profile Name: SM62_To_XO.

- For the Header To,
 - In the Criteria column select IP/Domain
 - In the Replace Action column select: Overwrite
 - In the Overwrite Value column: 192.168.163.138

- For the Header Request-Line,
 - In the Criteria column select IP/Domain
 - In the Replace Action column select: Overwrite
 - In the Overwrite Value column: 192.168.163.138

Figure 76: Topology Hiding XO Communications
7.3. Domain Policies

The Domain Policies feature allows one to configure, apply, and manage various rule sets (policies) to control unified communications based upon various criteria of communication sessions originating from or terminating in the enterprise. These criteria can be used to trigger different policies which will apply on call flows, change the behavior of the call, and make sure the call does not violate any of the policies. There are default policies available to use, or one can create a custom domain policy.

7.3.1. Create Application Rules

Application Rules allow one to define which types of SIP-based Unified Communications (UC) applications the UC-Sec security device will protect: voice, video, and/or Instant Messaging (IM). In addition, one can determine the maximum number of concurrent voice and video sessions so that the network will process to prevent resource exhaustion.

From the menu on the left-hand side, select Domain Policies → Application Rules.

- Select the default Rule
- Select Clone Rule button
 - Name: SM62_XO_AppR
 - Click Finish (not shown).

![Session Manager Application Rule](image)

Figure 77: Session Manager Application Rule

From the menu on the left-hand side, select Domain Policies → Application Rules.

- Select the default Rule
- Select Clone Rule button
 - Name: XO_AppR
 - Click Finish (not shown).
7.3.2. Create Border Rules

Border Rules allow one to control NAT Traversal. The NAT Traversal feature allows one to determine whether or not call flow through the DMZ needs to traverse a firewall and the manner in which pinholes will be kept open in the firewall to accommodate traffic.

From the menu on the left-hand side, select **Domain Policies → Border Rules**.

- Select the **default** Rule
- Select **Clone Rule** button
 - Enter Clone Name: SM62_XO_BorderR
 - Click **Finish** (not shown).
- Enter Clone Name: **XO_BorderR**
- Click **Finish** (not shown).

![UC-Sec Control Center](image)

Figure 80: XO Communications Border Rule

7.3.3. Create Media Rules

Media Rules allow one to define RTP media packet parameters such as prioritizing encryption techniques and packet encryption techniques. Together these media-related parameters define a strict profile that is associated with other SIP-specific policies to determine how media packets matching these criteria will be handled by the UC-Sec security product.

From the menu on the left-hand side, select **Domain Policies → Media Rules**.

- Select the **default-low-med** Rule
- Select **Clone Rule** button
 - Enter Clone Name: **SM62_XO_MediaR**
 - Click **Finish** (not shown).

![UC-Sec Control Center](image)

Figure 81: Session Manager Media Rule

From the menu on the left-hand side, select **Domain Policies → Media Rules**.

- Select the **default-low-med** Rule
- Select **Clone Rule** button
 - Enter Clone Name: **XO_MediaR**
- Click **Finish** (not shown).

Figure 82: XO Communications Media Rule

7.3.4. Create Security Rules

Security Rules allow one to define which enterprise-wide VoIP and Instant Message (IM) security features will be applied to a particular call flow. Security Rules allows one to configure Authentication, Compliance, Fingerprinting, Scrubber, and Domain DoS. In addition to determining which combination of security features are applied, one can also define the security feature profile, so that the feature is applied in a specific manner to a specific situation.

From the menu on the left-hand side, select **Domain Policies → Security Rules**.

- Select the **default-med** Rule
- Select **Clone Rule** button
 - Enter Clone Name: **SM62_XO_SecR**
 - Click **Finish** (not shown).

Figure 83: Session Manager Security Rule

From the menu on the left-hand side, select **Domain Policies → Security Rules**.

- Select the **default-med** Rule
- Select **Clone Rule** button
 - Enter Clone Name: **XO_SecR**
 - Click **Finish** (not shown).
7.3.5. Create Signaling Rules

Signaling Rules allow one to define the action to be taken (Allow, Block, Block with Response, etc.) for each type of SIP-specific signaling request and response message. When SIP signaling packets are received by the UC-Sec, they are parsed and “patternmatched” against the particular signaling criteria defined by these rules. Packets matching the criteria defined by the Signaling Rules are tagged for further policy matching.

From the menu on the left-hand side, select Domain Policies → Signaling Rules.

- Select the default Rule
- Select Clone Rule button
 - Enter Clone Name: SM62_XO_SigR
 - Click Finish (not shown).

From the menu on the left-hand side, select Domain Policies → Signaling Rules.
- Select the **default** Rule
- Select **Clone Rule** button
 - Enter Clone Name: **XO_SigR**
 - Click **Finish** (not shown).

![Image](image_url)

Figure 86: XO Communications Signaling Rule

7.3.6. Create Time of Day Rules

A Time-of-day (ToD) Rule allows one to determine when the domain policy, it is assigned, to will be in effect. ToD Rules provide complete flexibility to fully accommodate the enterprise by, not only determining when a particular domain policy will be in effect, but also to whom it will apply, and for how long it will remain in effect.

From the menu on the left-hand side, select **Domain Policies → Time of Day Rules**.
- Select the **default** Rule
- Select **Clone Rule** button
 - Enter Clone Name: **SM62_XO_ToDR**
 - Click **Finish** (not shown).
From the menu on the left-hand side, select **Domain Policies → Time of Day Rules**.

- Select the **default** Rule
- Select **Clone Rule** button
 - Enter Clone Name: **XO_ToDR**
 - Click **Finish** (not shown).

Figure 87: Session Manager Time of Day Rule

Figure 88: XO Communications Time of Day Rule

7.3.7. Create Endpoint Policy Groups

The End-Point Policy Group feature allows one to create Policy Sets and Policy Groups. A **Policy Set** is an association of individual, SIP signaling-specific security policies (rule sets): application, border, media, security, signaling, and ToD. (Each of which was created using the procedures contained in the previous sections.) A **Policy Group** is comprised of one or more Policy Sets. The purpose of Policy Sets and Policy Groups is to increasingly aggregate and simplify the application of UC-Sec security features to very specific types of SIP signaling messages traversing through the enterprise.
From the menu on the left-hand side, select **Domain Policies → End Point Policy Groups**.

- Select **Add Group**
- Enter **Group Name**: SM62_XO_PolicyG
 - Application Rule: SM62_XO_AppR
 - Border Rule: SM62_XO_BorderR
 - Media Rule: SM62_XO_MediaR
 - Security Rule: SM62_XO_SecR
 - Signaling Rule: SM62_XO_SigR
 - Time of Day: SM62_XO_ToDR
- Select **Finish** (not shown).

![UC-Sec Control Center](image)

Figure 89: Session Manager End Point Policy Group

From the menu on the left-hand side, select **Domain Policies → End Point Policy Groups**.

- Select **Add Group**
- Enter **Group Name**: XO_PolicyG
 - Application Rule: XO_AppR
 - Border Rule: XO_BorderR
 - Media Rule: XO_MediaR
 - Security Rule: XO_SecR
 - Signaling Rule: XO_SigR
 - Time of Day: XO_ToDR
- Select **Finish** (not shown).
7.4. Device Specific Settings

The Device Specific Settings feature for SIP allows one to view aggregate system information, and manage various device-specific parameters which determine how a particular device will function when deployed in the network. Specifically, one has the ability to define and administer various device-specific protection features such as Message Sequence Analysis (MSA) functionality, end-point and session call flows and Network Management.

7.4.1. Manage Network Settings

From the menu on the left-hand side, select Device Specific Settings → Network Management.

- Enter the IP Address and Gateway Address for both the Inside and the Outside interfaces:
 - IP Address for Inside interface: 10.10.97.189; Gateway: 10.10.97.129
 - IP Address for Outside interface: 10.10.98.112; Gateway: 10.10.98.97
- Select the physical interface used in the Interface column:
 - Inside Interface: A1
 - Outside Interface: B1.
Select the **Interface Configuration** Tab.

- Toggle the State of the physical interfaces being used.

![Network Interface Status](image)

Figure 92: Network Interface Status

7.4.2. Create Media Interfaces

Media Interfaces define the type of signaling on the ports. The default media port range on the Avaya can be used for both inside and outside ports.

From the menu on the left-hand side, **Device Specific Settings → Media Interface**.

- **Select Add Media Interface**
 - **Name**: InsideMedia
 - **Media IP**: 10.10.97.189 (Internal IP Address toward Session Manager)
 - **Port Range**: 35000 - 40000
 - **Click Finish** (not shown)

- **Select Add Media Interface**
 - **Name**: OutsideMedia_XO
 - **Media IP**: 10.10.98.112 (External IP Address toward XO Communications trunk)
 - **Port Range**: 35000 - 40000
 - **Click Finish** (not shown).

![Media Interface](image)

Figure 93: Media Interface
7.4.3. Create Signaling Interfaces

Signaling Interfaces define the type of signaling on the ports.

From the menu on the left-hand side, select Device Specific Settings → Signaling Interface.
- Select Add Signaling Interface
 - Name: InsideSIP_UDP
 - Media IP: 10.10.97.189 (Internal IP Address toward Session Manager)
 - UDP Port: 5060
 - Click Finish (not shown).

From the menu on the left-hand side, select Device Specific Settings → Signaling Interface.
- Select Add Signaling Interface
 - Name: OutsideSIP_XO
 - Media IP: 10.10.98.112 (External IP Address toward XO Communications trunk)
 - UDP Port: 5060
 - Click Finish (not shown).

7.4.4. Configuration Server Flows

Server Flows allow to categorize trunk-side signaling and apply a policy.

7.4.4.1 Create End Point Flows - Session Manager

From the menu on the left-hand side, select Device Specific Settings → End Point Flows.
- Select the Server Flows Tab
- Select Add Flow (not shown), enter Flow Name: XO_Communications
 - Server Configuration: SM62
 - URI Group: Xo_Communications
 - Transport: *
 - Remote Subnet: *
 - Received Interface: OutsideSIP_XO

Figure 94: Signaling Interface
- Signaling Interface: InsideSIP_UDP
- Media Interface: InsideMedia
- End Point Policy Group: SM62_XO_PolicyG
- Routing Profile: SM62_To_XO
- Topology Hiding Profile: XO_To_SM62
- File Transfer Profile: None
- Click Finish (not shown).

7.4.4.2 Create End Point Flows – XO Communications

From the menu on the left-hand side, select Device Specific Settings → End Point Flows.

- Select the Server Flows Tab
- Select Add Flow (not shown), enter Flow Name: XO_Communications
- Server Configuration: XO_Communications
- URI Group: Xo_Communications
- Transport: *
 - Remote Subnet: *
 - Received Interface: InsideSIP_UDP
 - Signaling Interface: OutsideSIP_XO
 - Media Interface: OutsideMedia_XO
 - End Point Policy Group: XO_PolicyG
 - Routing Profile: XO_To_SM62
 - Topology Hiding Profile: SM62_To_XO
 - File Transfer Profile: None
 - Click Finish (not shown).

Figure 95: End Point Flows

8. XO Communications SIP Trunking Configuration

XO Communications is responsible for the network configuration of the XO Communications SIP Trunking service. XO Communications will require that the customer provide the public IP address used to reach the Avaya SBCE public interface at the edge of the enterprise. XO Communications will provide the IP address of the XO Communications SIP proxy/SBC, IP addresses of media sources and Direct Inward Dialed (DID) numbers assigned to the enterprise.
This information is used to complete configurations for Communication Server 1000, Session Manager, and the SBCE discussed in the previous sections.

The configuration between XO Communications and the enterprise is a static configuration. There is no registration of the SIP trunk or enterprise users to the XO Communications network.

9. Verification Steps
The following steps may be used to verify the configuration.

9.1. General
Place an inbound call from a PSTN phone to an internal Avaya phone, answer the call, and verify that two-way speech path exists. Verify that the call remains stable for several minutes and disconnects properly.

9.2. Verification of an Active Call on Call Server
Active Call Trace (LD 80)
The following is an example of one of the commands available on the Communication Server 1000 to trace the DN for which the call is in progress or idle. The call scenario involved PSTN phone number 6139675206 calling 2146355890.

- Login on to Signaling Server 10.10.97.177 with admin account and password.
- Issue a command “cslogin” to login on to the Call Server.
- Log in to the Overlay command prompt, issue the command LD 80 and then trace 0 5890.
- After the call is released, issue command trac 0 5890 again to see if the DN is released back to idle state.

Below is the actual output of the Call Server Command Line mode when the 5890 is in call state:

```plaintext
>ld 80
.trac 0 5890

ACTIVE  VTN 096 0 00 02
ORIG  VTN 100 0 00 00  VTRK IPTI  RMBR  100 1 INCOMING VOIP GW CALL
  FAR-END SIP SIGNALLING IP: 10.10.97.189
  FAR-END MEDIA ENDPOINT IP: 10.10.97.189 PORT: 35042
  FAR-END VendorID: AVAYA-SM-6.2.2.0.622005
TERM  VTN 096 0 00 02  KEY 0 SCR MARP CUST 0 DN 5890 TYPE 2002P2
  SIGNALLING ENCRYPTION: INSEC
  MEDIA ENDPOINT IP: 10.33.5.32 PORT: 5200
  MEDIA PROFILE: CODEC G.711 MU-LAW PAYLOAD 20 ms VAD OFF
  RFC2833: RXPT 101 TXPT 101 DIAL DN 5890
  MAIN_PM ESTD
  TALKSLOT ORIG 6 TERM 11
  EES_DATA:
  NONE
  QUEU  NONE
```
And this is the example after the call on 5890 is finished.

SIP Trunk monitoring (LD 32)
Place a call inbound from PSTN (6139675206) to an internal device (2146355890). Then check the SIP trunk status by using LD 32, one trunk is BUSY.

After the call is released, check all SIP trunk status changed to IDLE state.

9.3. Protocol Trace
Below is a wireshark trace of the same call scenario described in Section 9.2.
10. Conclusion

All of the test cases have been executed. Despite the number of observations seen during testing as noted in Section 2.2, the test result met the objectives outlined in Section 2.1. The XO Communications system is considered compliant with Avaya Communication Server 1000 Release 7.5, Avaya Aura® Session Manager Release 6.2 and Avaya Session Border Controller for Enterprise Release 4.0.5 Q19.

11. Additional References

Product services for Avaya SBCE may be found at:

Product documentation for Avaya, including the following, is available at:
http://support.avaya.com/

©2013 Avaya Inc. All Rights Reserved.
Avaya and the Avaya Logo are trademarks of Avaya Inc. All trademarks identified by ® and ™ are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners. The information provided in these Application Notes is subject to change without notice. The configurations, technical data, and recommendations provided in these Application Notes are believed to be accurate and dependable, but are presented without express or implied warranty. Users are responsible for their application of any products specified in these Application Notes.

Please e-mail any questions or comments pertaining to these Application Notes along with the full title name and filename, located in the lower right corner, directly to the Avaya DevConnect Program at devconnect@avaya.com.